Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Epilepsia ; 57(6): 994-1003, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27173016

RESUMO

OBJECTIVE: The discovery of mutations in DEPDC5 in familial focal epilepsies has introduced a novel pathomechanism to a field so far dominated by ion channelopathies. DEPDC5 is part of a complex named GAP activity toward RAGs (GATOR) complex 1 (GATOR1), together with the proteins NPRL2 and NPRL3, and acts to inhibit the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) pathway. GATOR1 is in turn inhibited by the GATOR2 complex. The mTORC1 pathway is a major signaling cascade regulating cell growth, proliferation, and migration. We aimed to study the contribution of GATOR complex genes to the etiology of focal epilepsies and to describe the associated phenotypical spectrum. METHODS: We performed targeted sequencing of the genes encoding the components of the GATOR1 (DEPDC5, NPRL2, and NPRL3) and GATOR2 (MIOS, SEC13, SEH1L, WDR24, and WDR59) complex in 93 European probands with focal epilepsy with or without focal cortical dysplasia. Phospho-S6 immunoreactivity was used as evidence of mTORC1 pathway activation in resected brain tissue of patients carrying pathogenic variants. RESULTS: We identified four pathogenic variants in DEPDC5, two in NPRL2, and one in NPRL3. We showed hyperactivation of the mTORC1 pathway in brain tissue from patients with NPRL2 and NPRL3 mutations. Collectively, inactivating mutations in GATOR1 complex genes explained 11% of cases of focal epilepsy, whereas no pathogenic mutations were found in GATOR2 complex genes. GATOR1-related focal epilepsies differ clinically from focal epilepsies due to mutations in ion channel genes by their association with focal cortical dysplasia and seizures emerging from variable foci, and might confer an increased risk of sudden unexplained death in epilepsy (SUDEP). SIGNIFICANCE: GATOR1 complex gene mutations leading to mTORC1 pathway upregulation is an important cause of focal epilepsy with cortical malformations and represents a potential target for novel therapeutic approaches.


Assuntos
Epilepsias Parciais/genética , Saúde da Família , Predisposição Genética para Doença/genética , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Serina-Treonina Quinases TOR/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Epilepsias Parciais/diagnóstico por imagem , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Adulto Jovem
2.
J Neurol Sci ; 342(1-2): 69-78, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24836863

RESUMO

Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.


Assuntos
Ataxia/complicações , Ataxia/genética , Edema Encefálico/complicações , Edema Encefálico/genética , Canais de Cálcio/genética , Ataxia Cerebelar/complicações , Ataxia Cerebelar/genética , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/genética , Acetazolamida/uso terapêutico , Adolescente , Animais , Ataxia/tratamento farmacológico , Edema Encefálico/tratamento farmacológico , Canais de Cálcio/fisiologia , Ataxia Cerebelar/tratamento farmacológico , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença/genética , Humanos , Lactente , Imageamento por Ressonância Magnética , Potenciais da Membrana , Transtornos de Enxaqueca/tratamento farmacológico , Mutação de Sentido Incorreto/genética , Neuroimagem , Oócitos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA