Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nanomedicine ; 40: 102476, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743019

RESUMO

We report the design and adaptation of iron/iron oxide nanoparticle-based optical nanobiosensors for enzymes or cytokine/chemokines that are established biomarkers of lung diseases. These biomarkers comprise ADAM33, granzyme B, MMP-8, neutrophil elastase, arginase, chemokine (C-C motif) ligand 20 and interleukin-6. The synthesis of nanobiosensors for these seven biomarkers, their calibration with commercially available enzymes and cytokines/chemokines, as well as their validation using bronchoalveolar lavage (BAL) obtained from a mouse model of TLR3-mediated inflammation are discussed here. Exhaled Breath Condensate (EBC) is a minimally invasive approach for sampling airway fluid in the diagnosis and management of various lung diseases in humans (e.g., asthma, COPD and viral infections). We report the proof-of-concept of using human EBC in conjunction with nanobiosensors for diagnosis/monitoring airway inflammation. These findings suggest that, with nanosensor technology, human EBC can be utilized as a liquid biopsy to monitor inflammation/remodeling in lung disease.


Assuntos
Asma , Pneumopatias , Animais , Biomarcadores , Testes Respiratórios , Inflamação/diagnóstico , Camundongos
2.
Nanomedicine ; 14(6): 1823-1832, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29782949

RESUMO

Numerous proteases, such as matrix metalloproteinases (MMPs), cathepsins (CTS), and urokinase plasminogen activator (UpA), are dysfunctional (that is, over- or under-expressed) in solid tumors, when compared to healthy human subjects. This offers the opportunity to detect early tumors by liquid biopsies. This approach is of particular advantage for the early detection of pancreatic cancer, which is a "silent killer". We have developed fluorescence nanobiosensors for ultrasensitive (sub-femtomolar) arginase and protease detection, consisting of water-dispersible Fe/Fe3O4 core/shell nanoparticles and two tethered fluorescent dyes: TCPP (Tetrakis(4-carboxyphenyl)porphyrin) and cyanine 5.5. Upon posttranslational modification or enzymatic cleavage, the fluorescence of TCPP increases, which enables the detection of proteases at sub-femtomolar activities utilizing conventional plate readers. We have identified an enzymatic signature for the detection of pancreatic adenocarcinomas in serum, consisting of arginase, matrix metalloproteinase-1, -3, and - 9, cathepsin-B and -E, urokinase plasminogen activator, and neutrophil elastase, which is a potential game-changer.


Assuntos
Técnicas Biossensoriais , Carcinoma Ductal Pancreático/diagnóstico , Detecção Precoce de Câncer/métodos , Corantes Fluorescentes/química , Nanopartículas/química , Neoplasias Pancreáticas/diagnóstico , Estudos de Casos e Controles , Feminino , Humanos , Biópsia Líquida , Masculino
3.
Nanomedicine ; 13(8): 2555-2564, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28754467

RESUMO

A novel type of supramolecular aggregate, named a "nanosponge" was synthesized through the interaction of novel supramolecular building blocks with trigonal geometry. The cholesterol-(K/D)nDEVDGC)3-trimaleimide unit consists of a trigonal maleimide linker to which homopeptides (either K or D) of variable lengths (n=5, 10, 15, 20) and a consensus sequence for executioner caspases (DEVDGC) are added via Michael addition. Upon mixing in aqueous buffer cholesterol-(K)nDEVDGC)3-trimaleimides and a 1:1 mixture of cholesterol-(K/D)nDEVDGC)3-trimaleimides form stable nanosponges, whereas cholesterol-(D)nDEVDGC)3-trimaleimide is unable to form supramolecular aggregates with itself. The structure of the novel nanosponges was investigated through explicit solvent and then coarse-grained molecular dynamics (MD) simulations. The nanosponges are between 80 nm and several micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells.


Assuntos
Colesterol/análogos & derivados , Portadores de Fármacos/química , Nanoestruturas/química , Peptídeos/química , Animais , Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Células RAW 264.7
4.
Anal Chem ; 88(20): 9920-9925, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27626461

RESUMO

A microfluidic device is reported that employs an out-of-plane optical fiber bridge to generate two excitation and two detection spots in a microfluidic channel using only one excitation source and one detector. This fiber optic bridge was integrated into a single cell analysis device to detect an intact cell just prior to lysis and the injected lysate 2, 5, 10, or 15 mm downstream of the injection point. Using this setup the absolute migration times for analytes from cells stochastically entering the lysis intersection could be determined for the first time in an automated fashion. This allowed the evaluation of several separation parameters, including analyte band velocity, migration time drift, diffusion coefficient, injection plug length, separation efficiency (N), and plate height (H), which previously could only be estimated. To demonstrate the utility of this system, a peptide substrate for protein kinase B (PKB) was designed, synthesized, and loaded into T-lymphocytes in order to measure PKB activity in individual cells. The optical fiber bridge is easy to implement, inexpensive, and flexible in terms of changing the distances between the two detection points.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Célula Única/métodos , Humanos , Células Jurkat/metabolismo , Fibras Ópticas , Peptídeos/análise , Peptídeos/metabolismo , Fosfopeptídeos/análise , Fosforilação , Proteínas Proto-Oncogênicas c-akt/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Análise de Célula Única/instrumentação
5.
ACS Omega ; 6(9): 6088-6099, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33718700

RESUMO

A novel series of copper-activatable drugs intended for use against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) were synthesized, characterized, and tested against the MSSA strain Newman and the MRSA Lac strain (a USA300 strain), respectively. These drugs feature an NNSN structural motif, which enables the binding of copper. In the absence of copper, no activity against MSSA and MRSA at realistic drug concentrations was observed. Although none of the novel drug candidates exhibits a stereocenter, sub-micromolar activities against SA Newman and micromolar activities against SA Lac were observed in the presence, but not in the absence, of bioavailable copper. Copper influx is a component of cellular response to bacterial infections, which is often described as nutritional immunity.

6.
Methods Mol Biol ; 2126: 95-106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112382

RESUMO

This chapter discusses a methodology for simultaneously imaging stem cells and endothelial cells within polysaccharide-based scaffolds for tissue engineering. These scaffolds were then implanted into nude mice. Human mesenchymal stem cells (HMSCs) were labeled with the T1-marker Gd(III)-DOTAGA-functionalized polysiloxane nanoparticles (GdNPs), whereas endothelial umbilical vein cells (HUVECs) were labeled with citrate-stabilized maghemite nanoparticles (IONPs), which predominantly shorten the T2-relaxation times of the water molecules in scaffolds and tissue. Dual cell detection was achieved by performing T1- and T2-weighted MRI in both tissue scaffolds and in vivo.


Assuntos
Rastreamento de Células/métodos , Células Endoteliais da Veia Umbilical Humana/citologia , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Imagem Individual de Molécula/métodos , Análise de Célula Única/métodos , Animais , Sobrevivência Celular , Células Cultivadas , Ácido Cítrico/química , Meios de Contraste , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Siloxanas/química , Engenharia Tecidual
7.
RSC Adv ; 9(48): 27927-27936, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530471

RESUMO

Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe3O4 and reduced-graphene-oxide (Fe3O4@RGO) anode materials. We demonstrate the relationship between the media pH and Fe3O4@RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe3O4@GO sheets at different surrounding pH values, and porosity of the resulted Fe3O4@RGO anode. The anode shows a high surface area of 338.8 m2 g-1 with a large amount of 10-40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe3O4@RGO delivers high specific-charge capacities of 740 mA h g-1 to 200 mA h g-1 at various current densities of 0.5 A g-1 to 10 A g-1, and an excellent capacity-retention capability even after long-term charge-discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe3O4-coated graphene materials-which is a major impediment in the synthesis process-and provides a facile synthetic pathway for depositing Fe3O4 and other metal oxide nanoparticles on highly porous RGO.

8.
ACS Appl Bio Mater ; 2(1): 49-60, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35016330

RESUMO

Peptide nanosponges of low polydispersity are spontaneously formed from trigonal supramolecular building blocks in aqueous buffers, which feature cationic and/or anionic oligopeptides (n = 5-20) and a hydrophobic unit. In contrast to classical liposomes/vesicles, nanosponges feature interwoven hydrophilic and hydrophobic nanodomains and are readily taken up by mammalian cells. Perillyl alcohol is known to be a simple, but effective small molecule drug against glioma multiforme. However, its efficacy is limited by a poor bioavailability. In order to make perillyl alcohol bioavailable, two nanosponges consisting of 10 aspartates, to which perillyl alcohol is attached by means of an ester bond, and 20 lysines or arginines (type (D-POH)10K20 and (D-POH)10R20) were synthesized, purified, and characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM). These nanosponges were then tested in cell cultures of murine glioma cells (GL26) and murine neural progenitor cells (NPC) because the latter was previously utilized in cell-based cancer therapy. The two nanosponges exhibited significantly different biophysical properties (size distribution and ζ potentials). Consequently, different efficacies in killing GL26 and NPC were observed in serum-containing culture media. The results from these experiments confirmed that the type (D-POH)10K20 nanosponge is a promising candidate for the (cell-mediated) cytotherapy of glioblastoma.

9.
Metallomics ; 11(4): 784-798, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30855050

RESUMO

The treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections poses a therapeutic challenge as even last resort drugs become increasingly ineffective. As the demand for antibiotics with novel modes of action is growing, new approaches are needed to probe a greater spectrum of antimicrobial activities for their potential efficacy against drug-resistant pathogens. The use of copper (Cu) by the innate immune system to mount an antimicrobial response against bacterial invaders has created an opportunity to explore a role for Cu in antimicrobial therapy. Here we describe pyrazolopyrimidinones (PZP) as novel copper-dependent inhibitors (CDI) of S. aureus. 5-Benzyl-3-(4-chlorophenyl)-2-methyl-4H,7H-pyrazolo[1,5-a]pyrimidin-7-one (PZP-915) showed potent bactericidal properties at sub-micromolar concentrations and activity against clinical MRSA isolates and biofilms cultures. This cupricidal activity is founded on the molecule's ability to coordinate Cu and induce accumulation of Cu ions inside S. aureus cells. We demonstrate that exposure to 915 + Cu led to an almost instantaneous collapse of the membrane potential which was accompanied by a complete depletion of cellular ATP, loss of cell-associated K+, a substantial gain of cell associated Na+, and an inability to control the influx of protons in slightly acidic medium, while the integrity of the cell membrane remained intact. These findings highlight PZP-915 as a novel membrane-directed metalloantibiotic against S. aureus that is likely to target a multiplicity of membrane associated protein functions rather than imposing physical damage to the membrane structure.


Assuntos
Antibacterianos/farmacologia , Cobre/farmacologia , Pirimidinonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Cobre/química , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Pirimidinonas/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/fisiologia
10.
RSC Adv ; 8(29): 16052-16060, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35542227

RESUMO

The structure of novel binary nanosponges consisting of (cholesterol-(K/D) n DEVDGC)3-trimaleimide units possessing a trigonal maleimide linker, to which either lysine (K)20 or aspartic acid (D)20 are tethered, has been elucidated by means of TEM. A high degree of agreement between these findings and structure predictions through explicit solvent and then coarse-grained molecular dynamics (MD) simulations has been found. Based on the nanosponges' structure and dynamics, caspase-6 mediated release of the model drug 5(6)-carboxyfluorescein has been demonstrated. Furthermore, the binary (DK20) nanosponges have been found to be virtually non-toxic in cultures of neural progenitor cells. It is of a special importance for the future development of cell-based therapies that DK20 nanosponges were taken up efficiently by leucocytes (WBC) in peripheral blood within 3 h of exposure. The percentage of live cells among the WBC was not significantly decreased by the DK20 nanosponges. In contrast to stem cell or leucocyte cell cultures, which have to be matched to the patient, autologous cells are optimal for cell-mediated therapy. Therefore, the nanosponges hold great promise for effective cell-based tumor targeting.

11.
Theriogenology ; 97: 83-88, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28583613

RESUMO

Metritis, a uterine disease caused by bacterial infection, is highly prevalent in dairy cattle after parturition. Uterine disease has negative effects on milk production and reproductive efficiency. Finding markers or indicators that can predict cows at greater risk for uterine disease could be beneficial to mitigating these deleterious effects. This study investigates the immune-derived enzymes arginase and matrix metalloproteinase-8 (MMP-8) as potential markers for development of metritis in dairy cows. In a retrospective matched case-control study, 53 lactating Holstein cows diagnosed with metritis were matched and paired to 53 lactating Holstein control cows. In addition to examining cows for diagnosis of metritis on d 4, 7, 10, and 14 after parturition, occurrence of retained fetal membranes, gender of the calf, and the event of a stillbirth were recorded. Blood samples were collected 7 ± 3 d before calving, on the day of calving, and 7 ± 3 d after calving and were assayed for activity of arginase and MMP-8. Associations between metritis and activity of arginase or MMP-8 were determined by conditional logistic regression at each individual sampling time point. An interaction between activity of arginase, before and on the day of parturition, and retained fetal membranes tended (P ≤ 0.13) to be associated with metritis. After parturition, activity of arginase and the interaction between activity of arginase and retained fetal membranes were not (P ≥ 0.22) associated with metritis. Activity of MMP-8 was not (P ≥ 0.20) associated with metritis in the periparturient period. Retained fetal membranes were associated with the odds of developing metritis. Activity of arginase before and at the time of parturition might be a potential marker for occurrence of metritis, especially in cows that develop retained fetal membranes. MMP-8 does not seem to be a potential indicator for metritis.


Assuntos
Arginase/metabolismo , Doenças dos Bovinos/metabolismo , Endometriose/veterinária , Metaloproteinase 8 da Matriz/metabolismo , Animais , Arginase/sangue , Arginase/genética , Estudos de Casos e Controles , Bovinos , Endometriose/metabolismo , Feminino , Metaloproteinase 8 da Matriz/sangue , Metaloproteinase 8 da Matriz/genética , Período Periparto , Estudos Retrospectivos , Fatores de Risco
12.
J Extracell Vesicles ; 6(1): 1359478, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819550

RESUMO

Background: Extracellular vesicles contain biological molecules specified by cell-type of origin and modified by microenvironmental changes. To conduct reproducible studies on exosome content and function, storage conditions need to have minimal impact on airway exosome integrity. Aim: We compared surface properties and protein content of airway exosomes that had been freshly isolated vs. those that had been treated with cold storage or freezing. Methods: Mouse bronchoalveolar lavage fluid (BALF) exosomes purified by differential ultracentrifugation were analysed immediately or stored at +4°C or -80°C. Exosomal structure was assessed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and charge density (zeta potential, ζ). Exosomal protein content, including leaking/dissociating proteins, were identified by label-free LC-MS/MS. Results: Freshly isolated BALF exosomes exhibited a mean diameter of 95 nm and characteristic morphology. Storage had significant impact on BALF exosome size and content. Compared to fresh, exosomes stored at +4°C had a 10% increase in diameter, redistribution to polydisperse aggregates and reduced ζ. Storage at -80°C produced an even greater effect, resulting in a 25% increase in diameter, significantly reducing the ζ, resulting in multilamellar structure formation. In fresh exosomes, we identified 1140 high-confidence proteins enriched in 19 genome ontology biological processes. After storage at room temperature, 848 proteins were identified. In preparations stored at +4°C, 224 proteins appeared in the supernatant fraction compared to the wash fractions from freshly prepared exosomes; these proteins represent exosome leakage or dissociation of loosely bound "peri-exosomal" proteins. In preparations stored at -80°C, 194 proteins appeared in the supernatant fraction, suggesting that distinct protein groups leak from exosomes at different storage temperatures. Conclusions: Storage destabilizes the surface characteristics, morphological features and protein content of BALF exosomes. For preservation of the exosome protein content and representative functional analysis, airway exosomes should be analysed immediately after isolation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA