Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 493(7433): 509-13, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23344361

RESUMO

The use of molecular spin state as a quantum of information for storage, sensing and computing has generated considerable interest in the context of next-generation data storage and communication devices, opening avenues for developing multifunctional molecular spintronics. Such ideas have been researched extensively, using single-molecule magnets and molecules with a metal ion or nitrogen vacancy as localized spin-carrying centres for storage and for realizing logic operations. However, the electronic coupling between the spin centres of these molecules is rather weak, which makes construction of quantum memory registers a challenging task. In this regard, delocalized carbon-based radical species with unpaired spin, such as phenalenyl, have shown promise. These phenalenyl moieties, which can be regarded as graphene fragments, are formed by the fusion of three benzene rings and belong to the class of open-shell systems. The spin structure of these molecules responds to external stimuli (such as light, and electric and magnetic fields), which provides novel schemes for performing spin memory and logic operations. Here we construct a molecular device using such molecules as templates to engineer interfacial spin transfer resulting from hybridization and magnetic exchange interaction with the surface of a ferromagnet; the device shows an unexpected interfacial magnetoresistance of more than 20 per cent near room temperature. Moreover, we successfully demonstrate the formation of a nanoscale magnetic molecule with a well-defined magnetic hysteresis on ferromagnetic surfaces. Owing to strong magnetic coupling with the ferromagnet, such independent switching of an adsorbed magnetic molecule has been unsuccessful with single-molecule magnets. Our findings suggest the use of chemically amenable phenalenyl-based molecules as a viable and scalable platform for building molecular-scale quantum spin memory and processors for technological development.

2.
Sci Rep ; 8(1): 1378, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358672

RESUMO

There is a large effort in research and development to realize electronic devices capable of storing information in new ways - for instance devices which simultaneously exhibit electro and magnetoresistance. However it remains a challenge to create devices in which both effects coexist. In this work we show that the well-known electroresistance in noble metal-Nb:SrTiO3 Schottky junctions can be augmented by a magnetoresistance effect in the same junction. This is realized by replacing the noble metal electrode with ferromagnetic Co. This magnetoresistance manifests as a room temperature tunneling anisotropic magnetoresistance (TAMR). The maximum room temperature TAMR (1.6%) is significantly larger and robuster with bias than observed earlier, not using Nb:SrTiO3. In a different set of devices, a thin amorphous AlOx interlayer inserted between Co and Nb:SrTiO3, reduces the TAMR by more than 2 orders of magnitude. This points to the importance of intimate contact between the Co and Nb:SrTiO3 for the TAMR effect. This is explained by electric field enhanced spin-orbit coupling of the interfacial Co layer in contact with Nb:SrTiO3. We propose that the large TAMR likely has its origin in the 3d orbital derived conduction band and large relative permittivity of Nb:SrTiO3 and discuss ways to further enhance the TAMR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA