Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(4): 1290-1299, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30510138

RESUMO

Energy partitioning and plant growth are mediated in part by a type I H+-pumping pyrophosphatase (H+-PPase). A canonical role for this transporter has been demonstrated at the tonoplast where it serves a job-sharing role with V-ATPase in vacuolar acidification. Here, we investigated whether the plant H+-PPase from Arabidopsis also functions in "reverse mode" to synthesize PPi using the transmembrane H+ gradient. Using patch-clamp recordings on Arabidopsis vacuoles, we observed inward currents upon Pi application on the cytosolic side. These currents were strongly reduced in vacuoles from two independent H+-PPase mutant lines (vhp1-1 and fugu5-1) lacking the classical PPi-induced outward currents related to H+ pumping, whereas they were significantly larger in vacuoles with engineered heightened expression of the H+-PPase. Current amplitudes related to reverse-mode H+ transport depended on the membrane potential, cytosolic Pi concentration, and magnitude of the pH gradient across the tonoplast. Of note, experiments on vacuolar membrane-enriched vesicles isolated from yeast expressing the Arabidopsis H+-PPase (AVP1) demonstrated Pi-dependent PPi synthase activity in the presence of a pH gradient. Our work establishes that a plant H+-PPase can operate as a PPi synthase beyond its canonical role in vacuolar acidification and cytosolic PPi scavenging. We propose that the PPi synthase activity of H+-PPase contributes to a cascade of events that energize plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citosol/metabolismo , Difosfatos/metabolismo , Pirofosfatase Inorgânica/metabolismo , Bombas de Próton/fisiologia , Saccharomyces cerevisiae
2.
Front Plant Sci ; 11: 273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256508

RESUMO

A fundamental factor to improve crop productivity involves the optimization of reduced carbon translocation from source to sink tissues. Here, we present data consistent with the positive effect that the expression of the Arabidopsis thaliana H+-PPase (AVP1) has on reduced carbon partitioning and yield increases in wheat. Immunohistochemical localization of H+-PPases (TaVP) in spring wheat Bobwhite L. revealed the presence of this conserved enzyme in wheat vasculature and sink tissues. Of note, immunogold imaging showed a plasma membrane localization of TaVP in sieve element- companion cell complexes of Bobwhite source leaves. These data together with the distribution patterns of a fluorescent tracer and [U14C]-sucrose are consistent with an apoplasmic phloem-loading model in wheat. Interestingly, 14C-labeling experiments provided evidence for enhanced carbon partitioning between shoots and roots, and between flag leaves and milk stage kernels in AVP1 expressing Bobwhite lines. In keeping, there is a significant yield improvement triggered by the expression of AVP1 in these lines. Green house and field grown transgenic wheat expressing AVP1 also produced higher grain yield and number of seeds per plant, and exhibited an increase in root biomass when compared to null segregants. Another agriculturally desirable phenotype showed by AVP1 Bobwhite plants is a robust establishment of seedlings.

3.
Hortic Res ; 1: 14047, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26504550

RESUMO

Biotechnology provides plant breeders an additional tool to improve various traits desired by growers and consumers of horticultural crops. It also provides genetic solutions to major problems affecting horticultural crops and can be a means for rapid improvement of a cultivar. With the availability of a number of horticultural genome sequences, it has become relatively easier to utilize these resources to identify DNA sequences for both basic and applied research. Promoters play a key role in plant gene expression and the regulation of gene expression. In recent years, rapid progress has been made on the isolation and evaluation of plant-derived promoters and their use in horticultural crops, as more and more species become amenable to genetic transformation. Our understanding of the tools and techniques of horticultural plant biotechnology has now evolved from a discovery phase to an implementation phase. The availability of a large number of promoters derived from horticultural plants opens up the field for utilization of native sequences and improving crops using precision breeding. In this review, we look at the temporal and spatial control of gene expression in horticultural crops and the usage of a variety of promoters either isolated from horticultural crops or used in horticultural crop improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA