Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mycorrhiza ; 30(1): 171, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32025891

RESUMO

The authors of the above-mentioned published article inadvertently omitted Dirk Redecker, Dioumacor Fall and Diaminatou Sanogo from the list of authors. The names and their affiliations presented in this paper.

2.
Mycorrhiza ; 29(1): 77-83, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460497

RESUMO

Arbuscular mycorrhizal fungi (AMF) play a major role as biofertilizer for sustainable agriculture. Nevertheless, it is still poorly documented whether inoculated AMF can successfully establish in field soils as exotic AMF and improve plant growth and productivity. Further, the fate of an exogenous inoculum is still poorly understood. Here, we pre-inoculated two cultivars (Tasset and Gola) of the fruit tree Ziziphus mauritiana (jujube) with the exotic AM fungus Rhizophagus irregularis isolate IR27 before transplantation in the field. In two experiments, tracking and quantification of R. irregularis IR27 were assessed in a 13-month-old jujube and an 18-month-old jujube in two fields located in Senegal. Our results showed that the inoculant R. irregularis IR27 was quantitatively traced and discriminated from native R. irregularis isolates in roots by using a qPCR assay targeting a fragment of the RNA polymerase II gene (RPB1), and that the inoculum represented only fractions ranging from 11 to 15% of the Rhizophagus genus in the two plantations 13 and 18 months after transplantation, respectively. This study validates the use of the RPB1 gene as marker for a relative quantification of a mycorrhizal inoculant fungus isolate in the field.


Assuntos
Glomeromycota/fisiologia , Micorrizas/fisiologia , Ziziphus/microbiologia , Sequência de Aminoácidos , Proteínas Fúngicas/análise , RNA Polimerase II/análise , Senegal , Alinhamento de Sequência
3.
ScientificWorldJournal ; 2019: 1252653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360125

RESUMO

Pearl millet is a dominant staple cereal crop for smallholder farmers in Senegal. However, the crop is constrained by various nonbiotic and biotic stresses such as downy mildew disease. To assess the prevalence of this disease in Senegal, a field survey was conducted during the rainy season of 2017 across eight main pearl millet production regions following latitudinal gradient with different climatic conditions. Results showed that downy mildew prevalence was higher in Kaolack (incidence = 68.19%), Kaffrine (incidence = 77.19%), Tambacounda (incidence = 97.03%), Sedhiou (incidence = 82.78%), and Kolda (incidence = 98.01%) than Thies (incidence = 28.21%), Diourbel (incidence = 24.46%), and Fatick (incidence = 37.75%) regions. The field survey revealed an incidence as high as 98% and 28% of infected area in surveyed fields. Significant correlations between geographic coordinates, disease incidence, and infected areas were also observed. This study provided information that could help to understand the prevalence of downy mildew in pearl millet in Senegal.


Assuntos
Agricultura , Oomicetos/fisiologia , Pennisetum/microbiologia , Doenças das Plantas/microbiologia , Clima , Geografia , Umidade , Prevalência , Chuva , Estações do Ano , Senegal , Temperatura
4.
Microb Ecol ; 69(3): 641-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25315832

RESUMO

Acacia senegal and Acacia seyal are small, deciduous legume trees, most highly valued for nitrogen fixation and for the production of gum arabic, a commodity of international trade since ancient times. Symbiotic nitrogen fixation by legumes represents the main natural input of atmospheric N2 into ecosystems which may ultimately benefit all organisms. We analyzed the nod and nif symbiotic genes and symbiotic properties of root-nodulating bacteria isolated from A. senegal and A. seyal in Senegal. The symbiotic genes of rhizobial strains from the two Acacia species were closed to those of Mesorhizobium plurifarium and grouped separately in the phylogenetic trees. Phylogeny of rhizobial nitrogen fixation gene nifH was similar to those of nodulation genes (nodA and nodC). All A. senegal rhizobial strains showed identical nodA, nodC, and nifH gene sequences. By contrast, A. seyal rhizobial strains exhibited different symbiotic gene sequences. Efficiency tests demonstrated that inoculation of both Acacia species significantly affected nodulation, total dry weight, acetylene reduction activity (ARA), and specific acetylene reduction activity (SARA) of plants. However, these cross-inoculation tests did not show any specificity of Mesorhizobium strains toward a given Acacia host species in terms of infectivity and efficiency as stated by principal component analysis (PCA). This study demonstrates that large-scale inoculation of A. senegal and A. seyal in the framework of reafforestation programs requires a preliminary step of rhizobial strain selection for both Acacia species.


Assuntos
Acacia/microbiologia , Aciltransferases/genética , Proteínas de Bactérias/genética , Mesorhizobium/genética , N-Acetilglucosaminiltransferases/genética , Oxirredutases/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Mesorhizobium/metabolismo , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/metabolismo , Oxirredutases/metabolismo , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Senegal , Análise de Sequência de DNA , Simbiose
5.
Front Plant Sci ; 15: 1364469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716345

RESUMO

Introduction: Micronutrient deficiencies, particularly iron (Fe) and zinc (Zn) deficiencies, are prevalent public health issues in developing countries, with children under 5 years old and breastfeeding women being the most affected in Senegal. Agronomic approaches, including soil fertilization and microbial biotechnology, are used to alleviate these deficiencies, yet challenges persist due to poor nutrient availability in staple food crops like pearl millet (Pennisetum glaucum L.). Methods: This study aimed to assess the contribution of one arbuscular mycorrhizal fungal (AMF) strain, Glomus mosseae, to the bioavailability of micronutrients (zinc and iron) in pearl millet biomass. Four pearl millet accessions from the National Laboratory for Research on Plant Production (LNRPV) collection were inoculated with G. mosseae obtained from the Common Microbiology Laboratory (LCM), with four replications. Gaussian regression tests were employed to analyze the data and determine correlations between AMF concentration and micronutrient bioavailability. Results: The results indicate that the combination of Glomus mosseae inoculation and organic residual products improved growth parameters and micronutrient absorption in pearl millet accessions. Analysis revealed significantly greater iron, zinc, phosphorus, and potassium contents in the foliar biomass of mycorrhizal pearl millet plants compared to non-mycorrhizal plants (control). Inoculation with AMF facilitated micronutrient absorption, particularly iron and zinc, not only in roots but also in aerial parts of the plants. Discussion: These findings suggest that incorporating AMF and organic residual products in millet cultivation could be a viable strategy for enhancing plant development and increasing iron and zinc contents in varieties. Further research is needed to elucidate the mechanisms underlying AMF-mediated nutrient uptake and optimize their use in agricultural practices.

6.
Microb Ecol ; 65(1): 128-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22864803

RESUMO

Several fast-growing and multipurpose tree species have been widely used in West Africa to both reverse the tendency of land degradation and restore soil productivity. Although beneficial effects have been reported on soil stabilization, there still remains a lack of information about their impact on soil microorganisms. Our investigation has been carried out in exotic and native tree plantations of 28 years and aimed to survey and compare the abundance and genetic diversity of natural legume-nodulating rhizobia (LNR). The study of LNR is supported by the phylogenetic analysis which clustered the isolates into three genera: Bradyrhizobium, Mesorhizobium, and Sinorhizobium. The results showed close positive correlations between the sizes of LNR populations estimated both in the dry and rainy seasons and the presence of legume tree hosts. There were significant increases in Rhizobium spp. population densities in response to planting with Acacia spp., and high genetic diversities and richness of genotypes were fittest in these tree plantations. This suggests that enrichment of soil Rhizobium spp. populations is host specific. The results indicated also that species of genera Mesorhizobium and Sinorhizobium were lacking in plantations of non-host species. By contrast, there was a widespread distribution of Bradyrhizobium spp. strains across the tree plantations, with no evident specialization in regard to plantation type. Finally, the study provides information about the LNR communities associated with a range of old tree plantations and some aspects of their relationships to soil factors, which may facilitate the management of man-made forest systems that target ecosystem rehabilitation and preservation of soil biota.


Assuntos
Acacia/microbiologia , Bradyrhizobium/classificação , Mesorhizobium/classificação , Nodulação , Sinorhizobium/classificação , Agricultura , Biodiversidade , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Mesorhizobium/genética , Mesorhizobium/isolamento & purificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Estações do Ano , Senegal , Sinorhizobium/genética , Sinorhizobium/isolamento & purificação , Microbiologia do Solo , Simbiose , Árvores/microbiologia
7.
J Environ Manage ; 128: 204-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23747371

RESUMO

Exotic trees were introduced in Africa to rehabilitate degraded ecosystems. Introduced species included several Australian species belonging to the Casuarinaceae family. Casuarinas trees grow very fast and are resistant to drought and high salinity. They are particularly well adapted to poor and disturbed soils thanks to their capacity to establish symbiotic associations with mycorrhizal fungi -both arbuscular and ectomycorrhizal- and with the nitrogen-fixing bacteria Frankia. These trees are now widely distributed in more than 20 African countries. Casuarina are mainly used in forestation programs to rehabilitate degraded or polluted sites, to stabilise sand dunes and to provide fuelwood and charcoal and thus contribute considerably to improving livelihoods and local economies. In this paper, we describe the geographical distribution of Casuarina in Africa, their economic and ecological value and the role of the symbiotic interactions between Casuarina, mycorrhizal fungi and Frankia.


Assuntos
Frankia/fisiologia , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/microbiologia , África , Austrália , Ecologia , Agricultura Florestal/métodos , Micorrizas/fisiologia , Solo , Simbiose
8.
Environ Microbiome ; 18(1): 42, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198640

RESUMO

BACKGROUND: Rhizosphere microbial communities are important components of the soil-plant continuum in paddy field ecosystems. These rhizosphere communities contribute to nutrient cycling and rice productivity. The use of fertilizers is a common agricultural practice in rice paddy fields. However, the long-term impact of the fertilizers usage on the rhizosphere microbial communities at different rice developmental stages remains poorly investigated. Here, we examined the effects of long-term (27 years) N and NPK-fertilization on bacterial and archaeal community inhabiting the rice rhizosphere at three developmental stages (tillering, panicle initiation and booting) in the Senegal River Delta. RESULTS: We found that the effect of long-term inorganic fertilization on rhizosphere microbial communities varied with the rice developmental stage, and between microbial communities in their response to N and NPK-fertilization. The microbial communities inhabiting the rice rhizosphere at panicle initiation appear to be more sensitive to long-term inorganic fertilization than those at tillering and booting stages. However, the effect of developmental stage on microbial sensitivity to long-term inorganic fertilization was more pronounced for bacterial than archaeal community. Furthermore, our data reveal dynamics of bacteria and archaea co-occurrence patterns in the rice rhizosphere, with differentiated bacterial and archaeal pivotal roles in the microbial inter-kingdom networks across developmental stages. CONCLUSIONS: Our study brings new insights on rhizosphere bacteria and archaea co-occurrence and the long-term inorganic fertilization impact on these communities across developmental stages in field-grown rice. It would help in developing strategies for the successful manipulation of microbial communities to improve rice yields.

9.
World J Microbiol Biotechnol ; 28(7): 2567-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22806163

RESUMO

Rhizobial inoculation has a positive impact on plants growth; however, there is little information about its effect on soil microbial communities and their activity in the rhizosphere. It was therefore necessary to test the effect of inoculation of Acacia senegal (L.) Willd. seedlings with selected rhizobia on plant growth, structure and diversity of soil bacterial communities and soil functioning in relation to plant provenance and soil origin. In order to carry out this experiment, three A. senegal seeds provenance from Kenya, Niger, and Senegal were inoculated with selected rhizobial strains. They have been further grown during 4 months in greenhouse conditions in two non-disinfected soils, Dahra and Goudiry coming respectively from arid and semi-arid areas. The principal component analysis (ACP) showed an inoculation effect on plant growth, rhizospheric bacterial diversity and soil functioning. However, the performances of the rhizobial strains varied in relation to the seed provenance and the soil origin. The selected rhizobial strains, the A. senegal provenance and the soil origin have modified the structure and the diversity of soil bacterial communities as measured by principal component analysis/denaturing gradient gel electrophoresis analyses. It is interesting to note that bacterial communities of Dahra soil were highly structured according to A. senegal provenance, whereas they were structured in relation to rhizobial inoculation in Goudiry soil. Besides, the impact of inoculation on soil microbial activities measured by fluorescein diacetate analyses varied in relation to plant provenance and soil origin. Nevertheless, total microbial activity was about two times higher in Goudiry, arid soil than in Dahra, semi-arid soil. Our results suggest that the rhizobial inoculation is a suitable tool for improving plants growth and soil fertility. Yet, the impact is dependent on inoculants, plant provenance and soil origin. It will, therefore, be crucial to identify the appropriate rhizobial strains and plant provenance or species in relation to the soil type.


Assuntos
Acacia/microbiologia , Rhizobium/fisiologia , Eletroforese em Gel de Gradiente Desnaturante , Reação em Cadeia da Polimerase , Rhizobium/classificação , Rhizobium/genética , Solo , Microbiologia do Solo
10.
Sci Rep ; 12(1): 207, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997057

RESUMO

Fungal communities associated with roots play a key role in nutrient uptake and in mitigating the abiotic and biotic stress of their host. In this study, we characterized the roots mycobiome of wild and cultivated pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] in three agro-ecological areas of Senegal following a rainfall gradient. We hypothesized that wild pearl millet could serve as a reservoir of endophytes for cultivated pearl millet. We therefore analyzed the soil factors influencing fungal community structure and whether cultivated and wild millet shared the same fungal communities. The fungal communities associated with pearl millet were significantly structured according to sites and plant type (wild vs cultivated). Besides, soil pH and phosphorus were the main factors influencing the fungal community structure. We observed a higher fungal diversity in cultivated compared to wild pearl millet. Interestingly, we detected higher relative abundance of putative pathotrophs, especially plant pathogen, in cultivated than in wild millet in semi-arid and semi-humid zones, and higher relative abundance of saprotrophs in wild millet in arid and semi-humid zones. A network analysis based on taxa co-occurrence patterns in the core mycobiome revealed that cultivated millet and wild relatives had dissimilar groups of hub taxa. The identification of the core mycobiome and hub taxa of cultivated and wild pearl millet could be an important step in developing microbiome engineering approaches for more sustainable management practices in pearl millet agroecosystems.


Assuntos
Produtos Agrícolas/microbiologia , Fungos/crescimento & desenvolvimento , Micobioma , Pennisetum/microbiologia , Raízes de Plantas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Código de Barras de DNA Taxonômico , DNA Fúngico/genética , Fungos/genética , Concentração de Íons de Hidrogênio , Pennisetum/crescimento & desenvolvimento , Pennisetum/metabolismo , Fósforo/química , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Senegal , Solo/química
11.
Mycorrhiza ; 21(4): 315-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21225294

RESUMO

The study of arbuscular mycorrhiza often requires the staining of fungal structures using specific dyes. Fluorescent dyes such as acid fuchsin and wheat germ agglutinin conjugates give excellent results, but these compounds are either hazardous or very expensive. Here, we show that a safer and inexpensive dye, Uvitex2B, can be efficiently used to stain intraradical fungal structures formed by the arbuscular mycorrhizal fungus Glomus intraradices in three plant species: carrot, Casuarina equisetifolia, and Medicago truncatula. The intensity and stability of Uvitex2B allow the acquisition of high-quality images using not only confocal laser scanning microscopy but also epifluorescence microscopy coupled with image deconvolution. Furthermore, we demonstrate that Uvitex2B and ß-glucuronidase staining are compatible and can thus be used to reveal arbuscular mycorrhizal structures in the context of promoter activation analysis.


Assuntos
Fungos/química , Glomeromycota/química , Micorrizas/química , Raízes de Plantas/microbiologia , Coloração e Rotulagem/métodos , Daucus carota/microbiologia , Corantes Fluorescentes/química , Glomeromycota/isolamento & purificação , Magnoliopsida/microbiologia , Medicago truncatula/microbiologia , Micorrizas/isolamento & purificação , Coloração e Rotulagem/instrumentação
12.
FEMS Microbiol Ecol ; 96(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32275297

RESUMO

Here, we assessed the relative influence of wheat genotype, agricultural practices (conventional vs organic) and soil type on the rhizosphere microbiome. We characterized the prokaryotic (archaea and bacteria) and eukaryotic (fungi and protists) communities in soils from four different countries (Cameroon, France, Italy, Senegal) and determined if a rhizosphere core microbiome existed across these different countries. The wheat genotype had a limited effect on the rhizosphere microbiome (2% of variance) as the majority of the microbial taxa were consistently associated to multiple wheat genotypes grown in the same soil. Large differences in taxa richness and in community structure were observed between the eight soils studied (57% variance) and the two agricultural practices (10% variance). Despite these differences between soils, we observed that 177 taxa (2 archaea, 103 bacteria, 41 fungi and 31 protists) were consistently detected in the rhizosphere, constituting a core microbiome. In addition to being prevalent, these core taxa were highly abundant and collectively represented 50% of the reads in our data set. Based on these results, we identify a list of key taxa as future targets of culturomics, metagenomics and wheat synthetic microbiomes. Additionally, we show that protists are an integral part of the wheat holobiont that is currently overlooked.


Assuntos
Microbiota , Rizosfera , França , Fungos , Genótipo , Itália , Raízes de Plantas , Solo , Microbiologia do Solo , Triticum
13.
Syst Appl Microbiol ; 42(2): 232-239, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30384991

RESUMO

The aim of this study was to survey the abundance and genetic diversity of legume-nodulating rhizobia (LNR) in the rhizosphere of a salt-tolerant grass, Sporobolus robustus Kunth, in the dry and rainy seasons along a salinity gradient, and to test their effectiveness on Prosopis juliflora (SW.) DC and Vachellia seyal (Del.) P.J.H. Hurter seedlings. The results showed a significant decrease in LNR population density and diversity in response to salinity, particularly during the dry season. A phylogenetic analysis of the 16S-23S rRNA ITS region clustered the 232 rhizobium isolates into three genera and 12 distinct representative genotypes: Mesorhizobium (8 genotypes), Ensifer (2 genotypes) and Rhizobium (2 genotypes). Of these genotypes, 2 were only found in the dry season, 4 exclusively in the rainy season and 6 were found in both seasons. Isolates of the Mesorhizobium and Ensifer genera were more abundant than those of Rhizobium, with 55%, 44% and 1% of the total strains, respectively. The abundance of the Mesorhizobium isolates appeared to increase in the dry season, suggesting that they were more adapted to environmental aridity than Ensifer genospecies. Conversely, Ensifer genospecies were more tolerant of high salinity levels than the other genospecies. However, Ensifer genospeciesproved to be the most efficient strains on P. juliflora and V. seyal seedlings. We concluded that S. robustus hosts efficient rhizobium strains in its rhizosphere, suggesting its ability to act as a nurse plant to facilitate seedling recruitment of P. juliflora and V. seyal in saline soils.


Assuntos
Fabaceae/microbiologia , Filogenia , Poaceae/microbiologia , Prosopis/microbiologia , Rhizobium/classificação , Rizosfera , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Nódulos Radiculares de Plantas/microbiologia , Plantas Tolerantes a Sal/microbiologia , Plântula/microbiologia , Senegal , Análise de Sequência de DNA , Microbiologia do Solo
14.
PLoS One ; 14(7): e0214182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31329591

RESUMO

Pearl millet is able to withstand dry and hot conditions and plays an important role for food security in arid and semi-arid areas of Africa and India. However, low soil fertility and drought constrain pearl millet yield. One target to address these constraints through agricultural practices or breeding is root system architecture. In this study, in order to easily phenotype the root system in field conditions, we developed a model to predict root length density (RLD) of pearl millet plants from root intersection densities (RID) counted on a trench profile in field conditions. We identified root orientation as an important parameter to improve the relationship between RID and RLD. Root orientation was notably found to depend on soil depth and to differ between thick roots (more anisotropic with depth) and fine roots (isotropic at all depths). We used our model to study pearl millet root system response to drought and showed that pearl millet reorients its root growth toward deeper soil layers that retain more water in these conditions. Overall, this model opens ways for the characterization of the impact of environmental factors and management practices on pearl millet root system development.


Assuntos
Pennisetum/fisiologia , Raízes de Plantas/fisiologia , Água/metabolismo , Agricultura , Secas , Modelos Biológicos , Pennisetum/anatomia & histologia , Raízes de Plantas/anatomia & histologia , Solo/química , Estresse Fisiológico
17.
PLoS One ; 11(12): e0167014, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907023

RESUMO

The overuse of agricultural chemicals such as fertilizer and pesticides aimed at increasing crop yield results in environmental damage, particularly in the Sahelian zone where soils are fragile. Crop inoculation with beneficial soil microbes appears as a good alternative for reducing agricultural chemical needs, especially for small farmers. This, however, requires selecting optimal combinations of crop varieties and beneficial microbes tested in field conditions. In this study, we investigated the response of rice plants to inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth promoting bacteria (PGPB) under screenhouse and field conditions in two consecutive seasons in Senegal. Evaluation of single and mixed inoculations with AMF and PGPB was conducted on rice (Oryza sativa) variety Sahel 202, on sterile soil under screenhouse conditions. We observed that inoculated plants, especially plants treated with AMF, grew taller, matured earlier and had higher grain yield than the non-inoculated plants. Mixed inoculation trials with two AMF strains were then conducted under irrigated field conditions with four O. sativa varieties, two O. glaberrima varieties and two interspecific NERICA varieties, belonging to 3 ecotypes (upland, irrigated, and rainfed lowland). We observed that the upland varieties had the best responses to inoculation, especially with regards to grain yield, harvest index and spikelet fertility. These results show the potential of using AMF to improve rice production with less chemical fertilizers and present new opportunities for the genetic improvement in rice to transfer the ability of forming beneficial rice-microbe associations into high yielding varieties in order to increase further rice yield potentials.


Assuntos
Bradyrhizobium/fisiologia , Grão Comestível/crescimento & desenvolvimento , Micorrizas/fisiologia , Oryza/microbiologia , Plântula/microbiologia , Microbiologia do Solo , Irrigação Agrícola , Agricultura/métodos , Biomassa , Ecótipo , Oryza/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Senegal , Solo/química , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA