Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cell Tissue Res ; 393(1): 47-62, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37227506

RESUMO

The seahorse is one of the most unique teleost fishes in its morphology. The body is surrounded by bony plates and spines, and the male fish possess a brooding organ, called the brood pouch, on their tail. The surfaces of the brood pouch and the spines are surrounded by characteristic so-called flame cone cells. Based on our histological observations, flame cone cells are present in the seahorse Hippocampus abdominalis, but not in the barbed pipefish Urocampus nanus or the seaweed pipefish Syngnathus schlegeli, both of which belong to the same family as the seahorse. In the flame cone cells, we observed expression of an "orphan gene" lacking homologs in other lineages. This gene, which we named the proline-glycine rich (pgrich) gene, codes for an amino acid sequence composed of repetitive units. In situ hybridization and immunohistochemical analyses detected pgrich-positive signals from the flame cone cells. Based on a survey of the genome sequences of 15 teleost species, the pgrich gene is only found from some species of Syngnathiformes (namely, the genera Syngnathus and Hippocampus). The amino acid sequence of the seahorse PGrich is somewhat similar to the sequence deduced from the antisense strand of elastin. Furthermore, there are many transposable elements around the pgrich gene. These results suggest that the pgrich gene may have originated from the elastin gene with the involvement of transposable elements and obtained its novel function in the flame cone cells during the evolution of the seahorse.


Assuntos
Smegmamorpha , Animais , Masculino , Smegmamorpha/genética , Smegmamorpha/anatomia & histologia , Elastina , Elementos de DNA Transponíveis , Peixes/genética , Epitélio
2.
Fish Shellfish Immunol ; 117: 24-35, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274420

RESUMO

In molluscs, migration of hemocytes and epithelial cells is believed to play central roles in wound healing. Here, we assessed cellular and molecular mechanisms of wound healing in Pacific abalone, a marine gastropod. Light and electron microscopy in the wounds showed early accumulation of putative hemocytes, collagen deposition by fibroblasts, and further coverage of this tissue by migration of adjacent epithelial cells. Cell labelling technique allowed us to track hemocytes, which migrated to wound surface within 24 h. The migrated cells first expressed PCNA and SoxF weakly, and then the epithelial cells expressed abundant PCNA and SoxB1, SoxB2, and SoxC. These findings imply that abalone SoxF is involved in hemocyte migration or their differentiation into fibroblasts, and suggest that the migrated epithelia acquire stem cell-like property and undergo active proliferation. This study is the first to show direct evidence of hemocyte migration to wounds and expression of Sox genes in molluscan wound healing.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Hemócitos/imunologia , Fatores de Transcrição SOX/genética , Cicatrização/genética , Animais , Movimento Celular , Expressão Gênica , Antígeno Nuclear de Célula em Proliferação/genética
3.
J Exp Zool B Mol Dev Evol ; 332(3-4): 81-91, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30964605

RESUMO

Most teleostean embryos develop and hatch without parental assistance, though some receive parental care. We focused on a paternal brood-care species, the barred-chin blenny (Rhabdoblennius nitidus [Günther, 1861]). As hatching approached, fanning behavior by the male parent drastically increased and then embryos hatch. In the absence of the male parent, most embryos failed to hatch. However, the hatching rate was greatly assisted by introducing an artificial water current, suggesting that paternal assistance other than for aeration is required for successful embryo hatching. Next, we analyzed genes for the hatching enzyme and egg-envelope protein, which were successfully cloned from barred-chin blenny, and found the expression patterns differed from those of other euteleosts. Generally, high choriolytic enzyme swells the intact egg envelope, and then low choriolytic enzyme solubilizes the swollen envelope. The expression levels of both the enzymes, but especially the latter, were much lower in barred-chin blenny that is known in most other oviparous species. In addition, the main component of the egg envelope was changed into ChgHm and choriogenin L (ChgL) in barred-chin blenny, whereas ChgH and ChgL for other euteleosts. These in barred-chin blenny would result in ineffective egg-envelope digestion because the posthatching egg envelopes were observed to be swollen but not solubilized. Male parental assistance by fanning until hatching may compensate for this insufficiency. Our study illustrates an example of the evolution of parent-embryo interaction built on a novel relationship: Degradation of the hatching enzyme/egg-envelope digestion system, accompanied by male parental hatching assistance.


Assuntos
Comportamento Animal , Peixes/fisiologia , Poder Familiar , Animais , Clonagem Molecular , DNA Complementar/genética , Embrião não Mamífero , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Regulação da Expressão Gênica/fisiologia , Masculino , Fatores de Tempo
4.
J Exp Zool B Mol Dev Evol ; 328(3): 240-258, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28229554

RESUMO

Teleost egg envelope generally consists of a thin outer layer and a thick inner layer. The inner layer of the Pacific herring egg envelope is further divided into distinct inner layers I and II. In our previous study, we cloned four zona pellucida (ZP) proteins (HgZPBa, HgZPBb, HgZPCa, and HgZPCb) from Pacific herring, two of which (HgZPBa and HgZPCa) were synthesized in the liver and two (HgZPBb and HgZPCb) in the ovary. In this study, we raised antibodies against these four proteins to identify their locations using immunohistochemistry. Our results suggest that inner layer I is constructed primarily of HgZPBa and Ca, whereas inner layer II consists primarily of HgZPBa. HgZPBb and Cb were minor components of the envelope. Therefore, the egg envelope of Pacific herring is primarily composed of liver-synthesized ZP proteins. A comparison of the thickness of the fertilized egg envelopes of 55 species suggested that egg envelopes derived from liver-synthesized ZP proteins tended to be thicker in demersal eggs than those in pelagic eggs, whereas egg envelopes derived from ovarian-synthesized ZP proteins had no such tendency. Our comparison suggests that the prehatching period of an egg with a thick egg envelope is longer than that of an egg with a thin egg envelope. We hypothesized that acquisition of liver-synthesized ZP proteins during evolution conferred the ability to develop a thick egg envelope, which allowed species with demersal eggs to adapt to mechanical stress in the prehatching environment by thickening the egg envelope, while pelagic egg envelopes have remained thin.


Assuntos
Evolução Biológica , Óvulo/metabolismo , Glicoproteínas da Zona Pelúcida/biossíntese , Zona Pelúcida/metabolismo , Sequência de Aminoácidos/genética , Animais , Clonagem Molecular , Proteínas do Ovo/biossíntese , Proteínas do Ovo/genética , Feminino , Peixes/genética , Peixes/crescimento & desenvolvimento , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Óvulo/crescimento & desenvolvimento , Glicoproteínas da Zona Pelúcida/genética
5.
J Exp Biol ; 220(Pt 24): 4720-4732, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084852

RESUMO

Spatiotemporal changes in branchial ionocyte distribution were investigated following transfer from seawater (SW) to freshwater (FW) in Japanese seabass. The mRNA expression levels of cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/K+/2Cl- cotransporter 1a (NKCC1a) in the gills rapidly decreased after transfer to FW, whereas Na+/H+ exchanger 3 (NHE3) and Na+/Cl- cotransporter 2 (NCC2) expression were upregulated following the transfer. Using quadruple-color whole-mount immunofluorescence staining with anti-Na+/K+-ATPase, anti-NHE3, anti-CFTR and T4 (anti-NKCC1a/NCC2) antibodies, we classified ionocytes into one SW type and two FW types: NHE3 cell and NCC2 cell. Time course observation after transfer revealed an intermediate type between SW-type and FW-type NHE3 ionocytes, suggesting functional plasticity of ionocytes. Finally, on the basis of the ionocyte classification of Japanese seabass, we observed the location of ionocyte subtypes on frozen sections of the gill filaments stained by triple-color immunofluorescence staining. Our observation indicated that SW-type ionocytes transformed into FW-type NHE3 ionocytes and at the same time shifted their distribution from filaments to lamellae. However, FW-specific NCC2 ionocytes appeared mainly in the filaments. Taken together, these findings indicate that ionocytes originated from undifferentiated cells in the filaments and expanded their distribution to the lamellae during FW acclimation.


Assuntos
Bass/fisiologia , Osmorregulação , Animais , Bass/genética , Bass/metabolismo , Proliferação de Células , Clonagem Molecular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunofluorescência , Água Doce , Brânquias/química , Brânquias/citologia , Brânquias/metabolismo , Concentração Osmolar , Plasma/química , RNA Mensageiro , Água do Mar , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
6.
Am J Pathol ; 185(7): 1889-98, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25987249

RESUMO

Type 2 diabetes mellitus is a leading health issue worldwide. Among cases of diabetes mellitus nephropathy (DN), the major complication of type 2 diabetes mellitus, the nephrotic phenotype is often intractable to clinical intervention and demonstrates the rapid decline of renal function to end-stage renal disease. We recently identified the gene for glypican-5 (GPC5), a cell-surface heparan sulfate proteoglycan, as conferring susceptibility for acquired nephrotic syndrome and additionally identified an association through a genome-wide association study between a variant in GPC5 and DN of type 2 diabetes mellitus. In vivo and in vitro data showed a progressive increase of GPC5 in type 2 DN along with severity; the excess was derived from glomerular mesangial cells. In this study, diabetic kidney showed that accumulation of fibroblast growth factor (Fgf)2 strikingly induced progressive proteinuria that was avoided in Gpc5 knockdown mice. The efficacy of Gpc5 inhibition was exerted through expression of the Fgf receptors 3 and 4 provoked in the diabetic kidney attributively. Extraglomerular Fgf2 was pathogenic in DN, and the deterrence of Gpc5 effectively inhibited the glomerular accumulation of Fgf2, the subsequent increase of mesangial extracellular matrix, and the podocytes' small GTPase activity. These findings elucidate the pivotal role of GPC5, identified as a susceptible gene in the genome-wide association study, in hyperglycemia-induced glomerulopathy.


Assuntos
Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/etiologia , Glipicanas/metabolismo , Síndrome Nefrótica/etiologia , Adulto , Idoso , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Suscetibilidade a Doenças , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Mesângio Glomerular/patologia , Glipicanas/genética , Humanos , Hiperglicemia/complicações , Hiperglicemia/patologia , Rim/metabolismo , Rim/patologia , Falência Renal Crônica/etiologia , Falência Renal Crônica/patologia , Masculino , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Proteinúria/etiologia , Ratos
7.
J Exp Zool B Mol Dev Evol ; 326(2): 125-35, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26987447

RESUMO

Syngnathiform fishes carry their eggs in a brood structure found in males. The brood structure differs from species to species: seahorses carry eggs within enclosed brood pouch, messmate pipefish carry eggs in the semi-brood pouch, and alligator pipefish carry eggs in the egg compartment on abdomen. These egg protection strategies were established during syngnathiform evolution. In the present study, we compared the hatching mode of protected embryos of three species. Electron microscopic observations revealed that alligator pipefish and messmate pipefish egg envelopes were thicker than those of seahorses, suggesting that the seahorse produces a weaker envelope. Furthermore, molecular genetic analysis revealed that these two pipefishes possessed the egg envelope-digesting enzymes, high choriolytic enzyme (HCE), and low choriolytic enzyme (LCE), as do many euteleosts. In seahorses, however, only HCE gene expression was detected. When searching the entire seahorse genome by high-throughput DNA sequencing, we did not find a functional LCE gene and only a trace of the LCE gene exon was found, confirming that the seahorse LCE gene was pseudogenized during evolution. Finally, we estimated the size and number of hatching gland cells expressing hatching enzyme genes by whole-mount in situ hybridization. The seahorse cells were the smallest of the three species, while they had the greatest number. These results suggest that the isolation of eggs from the external environment by paternal bearing might bring the egg envelope thin, and then, the hatching enzyme genes became pseudogenized. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Evolução Biológica , Smegmamorpha/embriologia , Smegmamorpha/genética , Animais , Clonagem Molecular , DNA Complementar , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Óvulo
8.
Gen Comp Endocrinol ; 232: 151-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27118703

RESUMO

Endocrine control of osmoregulation is essential for teleosts to adapt to various aquatic environments. Prolactin (PRL) is known as a fundamental endocrine factor for hyperosmoregulation in teleost fishes, acting on ionocytes in the gills to maintain ion concentrations of body fluid within narrow physiological ranges in freshwater conditions. Cortisol is also known as an osmoregulation-related steroid in teleosts; however, its precise function is still controversial. Here, we investigated more detailed effects of PRL and roles of cortisol on ionocytes of Mozambique tilapia (Oreochromis mossambicus) in freshwater, using an improved gill filament incubation system. This incubation system resulted in enhanced cell viability, as evaluated using the dead cell marker propidium iodide. PRL was shown to maintain the density of freshwater-type ionocytes in isolated gill filaments; this effect of PRL is not achieved by the activation of cell proliferation, but by the maintenance of existing ionocytes. Cortisol alone did not show any distinct effect on ionocyte density in isolated gill filaments. We also assessed effects of PRL and cortisol on relative mRNA levels of NCC2, NHE3, NKAa1a, and NKAa1b. PRL maintained relative NCC2 and NKAa1a mRNA abundance, and cortisol showed a stimulatory effect on relative NCC2 and NKAa1a mRNA levels in combination with PRL, though cortisol alone exerted no effect on these genes. An increase in NKAa1b mRNA abundance was detected in cortisol-treated groups. PRL treatment also maintained normal NCC2 localization at the apical membrane of the ionocytes. These results indicate that PRL maintains freshwater-type ionocytes, and that cortisol stimulates the function of ionocytes maintained by PRL.


Assuntos
Brânquias/metabolismo , Prolactina/metabolismo , Tilápia/crescimento & desenvolvimento , Animais , Hidrocortisona/metabolismo , Osmorregulação , RNA Mensageiro/genética , Tilápia/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
9.
J Exp Zool B Mol Dev Evol ; 324(1): 41-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25504928

RESUMO

Ovoviviparous fish, whose embryonic development and hatching take place in the maternal body, is one of the good model organisms for studying adaptive evolution. Using genome database of the ovoviviparous platy Xiphophorus maculatus, we tried to search hatching enzyme genes (high choriolytic enzyme HCE and low choriolytic enzyme LCE) and egg envelope protein genes (choriogenin H, Hm, and L). Analysis of genes co-localized with them confirmed that shared synteny was found between platy and medaka genome. Both hatching enzyme genes HCE and LCE were pseudogenized in platy. In addition, one of the three choriogenin genes Hm was completely lost from the genome, the other two genes H and L encoded functional proteins. On the other hand, the expression of H and L was very low as compared to oviparous fishes, and the platy egg envelope was extremely thinner. Considering that ovoviviparous fish embryos are protected in the maternal body, an importance of egg envelope for protection of egg/embryo would be reduced in the ovoviviparous fishes. Platy embryos would escape from their thin egg envelope without help of hatching enzymes. In another ovoviviparous fish, black rockfish belonging to different order from the platy, one of the hatching enzyme genes has been reported to be pseudogenized, that is, the embryo of black rockfish can escape from egg envelope by only one hatching enzyme HCE. Adaptive evolution of the hatching strategy of ovoviviparous teleosts may be established by pseudogenization of hatching enzyme genes and/or lowering of expression and/or pseudogenization of hatching enzyme and egg envelope genes.


Assuntos
Peixes/genética , Pseudogenes , Sequência de Aminoácidos , Animais , Evolução Biológica , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Embrião não Mamífero/fisiologia , Feminino , Peixes/fisiologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Dados de Sequência Molecular , Ovoviviparidade , Óvulo/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo
10.
Cell Tissue Res ; 362(3): 677-88, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26183720

RESUMO

In marine cartilaginous fish, reabsorption of filtered urea by the kidney is essential for retaining a large amount of urea in their body. However, the mechanism for urea reabsorption is poorly understood due to the complexity of the kidney. To address this problem, we focused on elephant fish (Callorhinchus milii) for which a genome database is available, and conducted molecular mapping of membrane transporters along the different segments of the nephron. Basically, the nephron architecture of elephant fish was similar to that described for elasmobranch nephrons, but some unique features were observed. The late distal tubule (LDT), which corresponded to the fourth loop of the nephron, ran straight near the renal corpuscle, while it was convoluted around the tip of the loop. The ascending and descending limbs of the straight portion were closely apposed to each other and were arranged in a countercurrent fashion. The convoluted portion of LDT was tightly packed and enveloped by the larger convolution of the second loop that originated from the same renal corpuscle. In situ hybridization analysis demonstrated that co-localization of Na(+),K(+),2Cl(-) cotransporter 2 and Na(+)/K(+)-ATPase α1 subunit was observed in the early distal tubule and the posterior part of LDT, indicating the existence of two separate diluting segments. The diluting segments most likely facilitate NaCl absorption and thereby water reabsorption to elevate urea concentration in the filtrate, and subsequently contribute to efficient urea reabsorption in the final segment of the nephron, the collecting tubule, where urea transporter-1 was intensely localized.


Assuntos
Peixe Elétrico/anatomia & histologia , Peixe Elétrico/metabolismo , Túbulos Renais Coletores/anatomia & histologia , Túbulos Renais Coletores/metabolismo , Animais , Clonagem Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Modelos Biológicos , Filogenia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 309(10): R1251-63, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26377558

RESUMO

This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions.


Assuntos
Transporte de Íons/fisiologia , Concentração Osmolar , Prolactina/farmacologia , Simportadores de Cloreto de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Tilápia/fisiologia , Animais , Matriz Extracelular , Regulação da Expressão Gênica/fisiologia , Brânquias , Masculino , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Simportadores de Cloreto de Sódio/genética , Regulação para Cima
12.
Artigo em Inglês | MEDLINE | ID: mdl-26021981

RESUMO

Recently, a teleost ortholog of renal outer medullary K(+) channel (ROMK) expressed in gill ionocytes (ROMKa) has emerged as a primary K(+)-excreting pathway in fish. However, the mechanisms by which ROMKa expression is regulated in response to perturbations of plasma K(+) levels are unknown. In this study, we aimed to identify potential links between the endocrine system and K(+) regulation in a euryhaline fish. We assessed time-course changes in multiple endocrine parameters, including plasma cortisol and gene expression of branchial glucocorticoid and mineralocorticoid receptors (GR1, GR2, and MR) and pituitary hormones, in seawater (SW)-acclimated Mozambique tilapia (Oreochromis mossambicus) exposed to high-K(+) (H-K) SW. Exposure to H-K SW elicited little effects on plasma cortisol or mRNA levels of GRs and pituitary hormones. Since plasma K(+) and branchial ROMKa expression was increased within 6h after H-K treatment in vivo, the effect of high K(+) was subsequently tested in a gill filament incubation experiment using media with differing K(+) concentrations. ROMKa mRNA levels were induced following incubation of filaments in H-K medium for 6h. The present study is the first to demonstrate that the expression of ROMKa in teleost ionocytes can respond to high K(+) conditions independent from systemic signaling.


Assuntos
Adaptação Fisiológica , Canais de Potássio/metabolismo , Potássio/metabolismo , Água do Mar , Tilápia/fisiologia , Animais , Hidrocortisona/sangue , Técnicas In Vitro , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética
13.
Am J Physiol Regul Integr Comp Physiol ; 307(11): R1303-12, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25298512

RESUMO

Regulation of plasma K(+) levels in narrow ranges is vital to vertebrate animals. Since seawater (SW) teleosts are loaded with excess K(+), they constantly excrete K(+) from the gills. However, the K(+) regulatory mechanisms in freshwater (FW)-acclimated teleosts are still unclear. We aimed to identify the possible K(+) regulatory mechanisms in the gills and kidney, the two major osmoregulatory organs, of FW-acclimated Mozambique tilapia (Oreochromis mossambicus). As a potential molecular candidate for renal K(+) handling, a putative renal outer medullary K(+) channel (ROMK) was cloned from the tilapia kidney and tentatively named "ROMKb"; another ROMK previously cloned from the tilapia gills was thus renamed "ROMKa". The fish were acclimated to control FW or to high-K(+) (H-K) FW for 1 wk, and we assessed physiological responses of tilapia to H-K treatment. As a result, urinary K(+) levels were slightly higher in H-K fish, implying a role of the kidney in K(+) excretion. However, the mRNA expression levels of both ROMKa and ROMKb were very low in the kidney, while that of K(+)/Cl(-) cotransporter 1 (KCC1) was robust. In the gills, ROMKa mRNA was markedly upregulated in H-K fish. Immunofluorescence staining showed that branchial ROMKa was expressed at the apical membrane of type I and type III ionocytes, and the ROMKa immunosignals were more intense in H-K fish than in control fish. The present study suggests that branchial ROMKa takes a central role for K(+) regulation in FW conditions and that K(+) excretion via the gills is activated irrespective of environmental salinity.


Assuntos
Aclimatação/fisiologia , Água Doce , Expressão Gênica/fisiologia , Brânquias/metabolismo , Rim/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potássio/farmacologia , Tilápia/metabolismo , Animais , Brânquias/citologia , Rim/citologia , Concentração Osmolar , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/biossíntese , Membro 4 da Família 12 de Carreador de Soluto/metabolismo , Equilíbrio Hidroeletrolítico/genética , Equilíbrio Hidroeletrolítico/fisiologia
14.
Gen Comp Endocrinol ; 206: 146-54, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25088575

RESUMO

Euryhaline teleosts are faced with significant challenges during changes in salinity. Osmoregulatory responses to salinity changes are mediated through the neuroendocrine system which directs osmoregulatory tissues to modulate ion transport. Prolactin (PRL) plays a major role in freshwater (FW) osmoregulation by promoting ion uptake in osmoregulatory tissues, including intestine. We measured mRNA expression of ion pumps, Na(+)/K(+)-ATPase α3-subunit (NKAα3) and vacuolar type H(+)-ATPase A-subunit (V-ATPase A-subunit); ion transporters/channels, Na(+)/K(+)/2Cl(-) co-transporter (NKCC2) and cystic fibrosis transmembrane conductance regulator (CFTR); and the two PRL receptors, PRLR1 and PRLR2 in eleven intestinal segments of Mozambique tilapia (Oreochromis mossambicus) acclimated to FW or seawater (SW). Gene expression levels of NKAα3, V-ATPase A-subunit, and NKCC2 were generally lower in middle segments of the intestine, whereas CFTR mRNA was most highly expressed in anterior intestine of FW-fish. In both FW- and SW-acclimated fish, PRLR1 was most highly expressed in the terminal segment of the intestine, whereas PRLR2 was generally most highly expressed in anterior intestinal segments. While NKCC2, NKAα3 and PRLR2 mRNA expression was higher in the intestinal segments of SW-acclimated fish, CFTR mRNA expression was higher in FW-fish; PRLR1 and V-ATPase A-subunit mRNA expression was similar between FW- and SW-acclimated fish. Next, we characterized the effects of hypophysectomy (Hx) and PRL replacement on the expression of intestinal transcripts. Hypophysectomy reduced both NKCC2 and CFTR expression in particular intestinal segments; however, only NKCC2 expression was restored by PRL replacement. Together, these findings describe how both acclimation salinity and PRL impact transcript levels of effectors of ion transport in tilapia intestine.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Transporte de Íons/fisiologia , Prolactina/farmacologia , Receptores da Prolactina/genética , Salinidade , Tilápia/metabolismo , Aclimatação/fisiologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Água Doce , Intestinos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Prolactina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água do Mar , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Tilápia/crescimento & desenvolvimento , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Equilíbrio Hidroeletrolítico/genética
15.
Am J Physiol Regul Integr Comp Physiol ; 304(6): R423-34, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23364529

RESUMO

Cardiac natriuretic peptides (atrial natriuretic peptide, ANP; b-type natriuretic peptide, BNP; ventricular natriuretic peptide, VNP) and their direct ancestor C-type natriuretic peptide 3 (CNP3) exert potent osmoregulatory actions in fish. However, very little is known about their roles in embryonic osmoregulation. In this study, we performed loss-of-function analysis using euryhaline medaka (Oryzias latipes), which has lost ANP and VNP during evolution and thus possesses only BNP and CNP3. We found that the maintenance of whole-body osmolality in seawater embryos was impaired by the knockdown of BNP+OLGC7 (BNP receptor) or CNP3 alone from 1 day postfertilization, and the CNP3 knockdown was accompanied by greater water loss. The impaired osmoregulation in the knockdown embryos was not due to the suppressed expression of major transporters for NaCl excretion via ionocytes or of key enzyme genes for metabolic water production, but to the impaired blood circulation to the yolk-sac membrane caused by abnormal heart development. We detected a strong positive correlation between impaired blood circulation and increased body fluid osmolality and pharmacological blockade of blood flow increased body fluid osmolality in seawater embryos. We also found that the exaggerated water loss in CNP3 knockdown embryos is related to the failure to suppress aquaporin (AQP3, AQP4, and AQP9) gene expression. These results show that CNP3 decrease water permeability of body surfaces and that both BNP and CNP3 ensure sufficient blood flow to the yolk-sac membrane for efficient salt excretion by ionocytes and sufficient water production by yolk metabolism to promote seawater adaptation during early development in medaka.


Assuntos
Adaptação Fisiológica/fisiologia , Peptídeos Natriuréticos/metabolismo , Oryzias/embriologia , Oryzias/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Técnicas de Silenciamento de Genes , Oryzias/genética , Água do Mar , Equilíbrio Hidroeletrolítico/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-23178812

RESUMO

Reabsorption of monovalent ions in the kidney is essential for adaptation to freshwater and seawater in teleosts. To assess a possible role of Na(+)/H(+) exchanger 3 (NHE3) in renal osmoregulation, we first identified a partial sequence of cDNA encoding NHE3 from the Japanese eel kidney. For comparison, we also identified cDNAs encoding kidney specific Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2α) and Na(+)-Cl(-) cotransporter (NCCα). In eels acclimated to a wide range of salinities from deionized freshwater to full-strength seawater, the expression of NHE3 in the kidney was the highest in eel acclimated to full-strength seawater. Meanwhile, the NCCα expression exhibited a tendency to increase as the environmental salinity decreased, whereas the NKCC2α expression was not significantly different among the experimental groups. Immunohistochemical studies showed that NHE3 was localized to the apical membrane of epithelial cells composing the second segments of the proximal renal tubule in seawater-acclimated eel. Meanwhile, the apical membranes of epithelial cells in the distal renal tubule and collecting duct showed more intense immunoreactions of NKCC2α and NCCα, respectively, in freshwater eel than in seawater eel. These findings suggest that renal monovalent-ion reabsorption is mainly mediated by NKCC2α and NCCα in freshwater eel and by NHE3 in seawater eel.


Assuntos
Enguias/fisiologia , Rim , Trocadores de Sódio-Hidrogênio , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Cloretos/metabolismo , Água Doce/química , Rim/metabolismo , Rim/fisiologia , Salinidade , Água do Mar/química , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/fisiologia , Membro 1 da Família 12 de Carreador de Soluto , Simportadores/genética , Simportadores/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-23838143

RESUMO

We examined morphological changes and molecular mechanisms of ion regulation in mitochondrion-rich (MR) cells of Japanese eel acclimated to different environmental salinities. Electron microscopic observations revealed that the apical membrane of MR cells appeared as a flat or slightly projecting disk with a mesh-like structure on its surface in eel acclimated to freshwater (FW). In seawater (SW)-acclimated eel, in contrast, the apical membrane of MR cells showed a slightly concave surface without a mesh-like structure. The mRNA expression of Na(+)/H(+) exchanger-3 (NHE3) in deionized FW and normal SW was higher than that in normal FW and 30%-diluted SW. Expression of Na(+)/K(+)/2Cl(-) cotransporter-1a (NKCC1a) became higher with increasing environmental salinity. Immunofluorescence staining showed that the apical NHE3 immunoreaction was stronger in deionized FW and normal SW than in the other groups. Basolateral NKCC1 immunoreaction was most intense in normal SW. These results indicate that apical NHE3 is involved in ion uptake in fish acclimated to hypotonic environments, and that basolateral NKCC1 is important for acclimation to hypertonic environments. The relatively high expression of NHE3 in SW further indicates a possible role of NHE3 in acid-base regulation in the gills in SW-acclimated fish.


Assuntos
Aclimatação , Anguilla/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Animais , Clonagem Molecular , Proteínas de Peixes/genética , Expressão Gênica , Regulação da Expressão Gênica , Brânquias/ultraestrutura , Transporte de Íons , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Especificidade de Órgãos , Osmorregulação , Filogenia , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salinidade , Tolerância ao Sal , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
18.
Cell Tissue Res ; 348(1): 141-53, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22350848

RESUMO

In teleost fishes, it is well-established that the gill serves as an important ionoregulatory organ in addition to its primary function of respiratory gas exchange. In elasmobranch fish, however, the ionoregulatory function of the gills is still poorly understood. Although mitochondria-rich (MR) cells have also been found in elasmobranch fish, these cells are considered to function primarily in acid-base regulation. In this study, we found a novel aggregate structure made up of cells with basolaterally-expressed Na(+)/K(+)-ATPase (NKA), in addition to NKA-immunoreactive MR cells that have already been described in the gill filament and lamella. The cell aggregates, named follicularly-arranged NKA-rich cells (follicular NRCs), were found exclusively in the epithelial lining of the venous web in the cavernous region of the filament and the inter-filamental space of the gill septum. The follicular NRCs form a single-layered follicular structure with a large lumen leading to the external environment. The follicular NRCs were characterized by: (i) well-developed microvilli on the apical membrane, (ii) less prominent infoldings of the basolateral membrane and (iii) typical junction structures including deep tight junction between cells. In addition, large numbers of vesicles were observed in the cytoplasm and some of them were fused to the lateral membrane. The follicular NRCs expressed Na(+)/H(+) exchanger 3 and Ca(2+) transporter 1. The follicular NRCs thus have the characteristics of absorptive ionoregulatory cells and this suggests that the elasmobranch gill probably contributes more importantly to body fluid homeostasis than previously thought.


Assuntos
Elasmobrânquios/anatomia & histologia , Elasmobrânquios/metabolismo , Brânquias/anatomia & histologia , Brânquias/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Polaridade Celular , Forma Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação Enzimológica da Expressão Gênica , Brânquias/citologia , Brânquias/ultraestrutura , Hibridização In Situ , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Transporte de Íons , Japão , Proteínas de Membrana Transportadoras/metabolismo , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Membro 2 da Família 12 de Carreador de Soluto
19.
Am J Physiol Regul Integr Comp Physiol ; 302(5): R568-76, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22204952

RESUMO

Despite recent progress in physiology of fish ion homeostasis, the mechanism of plasma K+ regulation has remained unclear. Using Mozambique tilapia, a euryhaline teleost, we demonstrated that gill mitochondrion-rich (MR) cells were responsible for K+ excretion, using a newly invented technique that insolubilized and visualized K+ excreted from the gills. For a better understanding of the molecular mechanism of K+ excretion in the gills, cDNA sequences of renal outer medullary K+ channel (ROMK), potassium large conductance Ca(2+)-activated channel, subfamily M (Maxi-K), K(+)-Cl(-) cotransporters (KCC1, KCC2, and KCC4) were identified in tilapia as the candidate molecules that are involved in K+ handling. Among the cloned candidate molecules, only ROMK showed marked upregulation of mRNA levels in response to high external K+ concentration. In addition, immunofluorescence microscopy revealed that ROMK was localized in the apical opening of gill MR cells, and that the immunosignals were most intense in the fish acclimated to the environment with high K+ concentration. To confirm K+ excretion via ROMK, K+ insolubilization-visualization technique was applied again in combination with K+ channel blockers. The K+ precipitation was prevented in the presence of Ba2+, indicating that ROMK has a pivotal role in K+ excretion. The present study is the first to demonstrate that the fish excrete K+ from the gill MR cells, and that ROMK expressed in the apical opening of the MR cells is a main molecular pathway responsible for K+ excretion.


Assuntos
Brânquias/metabolismo , Mitocôndrias/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Tilápia/fisiologia , Sequência de Aminoácidos , Animais , Homeostase/fisiologia , Humanos , Dados de Sequência Molecular , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/análise , Ratos , Simportadores/metabolismo , Peixe-Zebra , Cotransportadores de K e Cl-
20.
Am J Physiol Regul Integr Comp Physiol ; 302(8): R1004-11, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22378774

RESUMO

In teleost fish, prolactin (PRL) is an important hormone for hyperosmoregulation. The release of PRL from the pituitary of Mozambique tilapia is stimulated by a decrease in extracellular osmolality. Previous studies have shown that hyposmotically induced PRL release is linked with cell volume changes, and that stretch-activated Ca(2+) channels are likely responsible for the initiation of the signal transduction for PRL release. In this study, we identified the stretch-activated Ca(2+) channel transient receptor potential vanilloid 4 (TRPV4) from the rostral pars distalis (RPD) of tilapia acclimated to freshwater (FW). TRPV4 transcripts were ubiquitously expressed in tilapia; the level of expression in RPDs of FW-acclimated fish was lower than that found in RPDs of seawater (SW)-acclimated fish. Immunohistochemical analysis of the pituitary revealed that TRPV4 is localized in the cell membrane of PRL cells of both FW and SW tilapia. A functional assay with CHO-K1 cells showed that tilapia TRPV4 responded to a decrease in extracellular osmolality, and that its function was suppressed by ruthenium red (RR) and activated by 4α-phorbol 12,13-didecanoate (4aPDD). Exposure of dissociated PRL cells from FW-acclimated tilapia to RR blocked hyposmolality induced PRL release. PRL release, on the other hand, was stimulated by 4aPDD. These results indicate that PRL release in response to physiologically relevant changes in extracellular osmolality is mediated by the osmotically sensitive TRPV4 cation channel.


Assuntos
Lactotrofos/metabolismo , Adeno-Hipófise/metabolismo , Prolactina/metabolismo , Canais de Cátion TRPV/metabolismo , Tilápia/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia , Aclimatação/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA