Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Plant Physiol ; 192(1): 102-118, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575825

RESUMO

In planta, H2O2 is produced as a by-product of enzymatic reactions and during defense responses. Ascorbate peroxidase (APX) is a key enzyme involved in scavenging cytotoxic H2O2. Here, we report the crystal structure of cytosolic APX from sorghum (Sorghum bicolor) (Sobic.001G410200). While the overall structure of SbAPX was similar to that of other APXs, SbAPX uniquely displayed four bound ascorbates rather than one. In addition to the ɣ-heme pocket identified in other APXs, ascorbates were bound at the δ-meso and two solvent-exposed pockets. Consistent with the presence of multiple binding sites, our results indicated that the H2O2-dependent oxidation of ascorbate displayed positive cooperativity. Bound ascorbate at two surface sites established an intricate proton network with ascorbate at the ɣ-heme edge and δ-meso sites. Based on crystal structures, steady-state kinetics, and site-directed mutagenesis results, both ascorbate molecules at the ɣ-heme edge and the one at the surface are expected to participate in the oxidation reaction. We provide evidence that the H2O2-dependent oxidation of ascorbate by APX produces a C2-hydrated bicyclic hemiketal form of dehydroascorbic acid at the ɣ-heme edge, indicating two successive electron transfers from a single-bound ascorbate. In addition, the δ-meso site was shared with several organic compounds, including p-coumaric acid and other phenylpropanoids, for the potential radicalization reaction. Site-directed mutagenesis of the critical residue at the ɣ-heme edge (R172A) only partially reduced polymerization activity. Thus, APX removes stress-generated H2O2 with ascorbates, and also uses this same H2O2 to potentially fortify cell walls via oxidative polymerization of phenylpropanoids in response to stress.


Assuntos
Peroxidases , Sorghum , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Peroxidases/metabolismo , Sorghum/genética , Sorghum/metabolismo , Peróxido de Hidrogênio , Modelos Moleculares , Sítios de Ligação , Ácido Ascórbico/metabolismo , Heme
2.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891840

RESUMO

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.


Assuntos
Aciltransferases , Liases Intramoleculares , Liases Intramoleculares/metabolismo , Liases Intramoleculares/química , Aciltransferases/metabolismo , Aciltransferases/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Flavonoides/metabolismo , Flavonoides/química , Cinética , Flavanonas/química , Flavanonas/metabolismo , Chalconas/química , Chalconas/metabolismo , Especificidade por Substrato , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Modelos Moleculares , Ligação Proteica , Conformação Proteica
3.
J Biol Chem ; 298(4): 101761, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202651

RESUMO

Plant NADPH-dependent cytochrome P450 reductase (CPR) is a multidomain enzyme that donates electrons for hydroxylation reactions catalyzed by class II cytochrome P450 monooxygenases involved in the synthesis of many primary and secondary metabolites. These P450 enzymes include trans-cinnamate-4-hydroxylase, p-coumarate-3'-hydroxylase, and ferulate-5-hydroxylase involved in monolignol biosynthesis. Because of its role in monolignol biosynthesis, alterations in CPR activity could change the composition and overall output of lignin. Therefore, to understand the structure and function of three CPR subunits from sorghum, recombinant subunits SbCPR2a, SbCPR2b, and SbCPR2c were subjected to X-ray crystallography and kinetic assays. Steady-state kinetic analyses demonstrated that all three CPR subunits supported the oxidation reactions catalyzed by SbC4H1 (CYP73A33) and SbC3'H (CYP98A1). Furthermore, comparing the SbCPR2b structure with the well-investigated CPRs from mammals enabled us to identify critical residues of functional importance and suggested that the plant flavin mononucleotide-binding domain might be more flexible than mammalian homologs. In addition, the elucidated structure of SbCPR2b included the first observation of NADP+ in a native CPR. Overall, we conclude that the connecting domain of SbCPR2, especially its hinge region, could serve as a target to alter biomass composition in bioenergy and forage sorghums through protein engineering.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Proteínas de Plantas , Sorghum , Animais , Lignina/metabolismo , Mamíferos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sorghum/química , Sorghum/enzimologia , Sorghum/genética
4.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675291

RESUMO

APX is a key antioxidant enzyme in higher plants, scavenging H2O2 with ascorbate in several cellular compartments. Here, we report the crystal structures of cytosolic ascorbate peroxidase from switchgrass (Panicum virgatum L., Pvi), a strategic feedstock plant with several end uses. The overall structure of PviAPX was similar to the structures of other APX family members, with a bound ascorbate molecule at the ɣ-heme edge pocket as in other APXs. Our results indicated that the H2O2-dependent oxidation of ascorbate displayed positive cooperativity. Significantly, our study suggested that PviAPX can oxidize a broad range of phenylpropanoids with δ-meso site in a rather similar efficiency, which reflects its role in the fortification of cell walls in response to insect feeding. Based on detailed structural and kinetic analyses and molecular docking, as well as that of closely related APX enzymes, the critical residues in each substrate-binding site of PviAPX are proposed. Taken together, these observations shed new light on the function and catalysis of PviAPX, and potentially benefit efforts improve plant health and biomass quality in bioenergy and forage crops.


Assuntos
Panicum , Ascorbato Peroxidases/metabolismo , Panicum/metabolismo , Simulação de Acoplamento Molecular , Peróxido de Hidrogênio/metabolismo , Ácido Ascórbico/metabolismo , Plantas/metabolismo
5.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762209

RESUMO

Flavonoids are potent antioxidants that play a role in defense against pathogens, UV-radiation, and the detoxification of reactive oxygen species. Dihydroflavonol 4-reductase (DFR) and flavanone 4-reductase (FNR) reduce dihydroflavonols and flavanones, respectively, using NAD(P)H to produce flavan-(3)-4-(di)ols in flavonoid biosynthesis. Anthocyanidin reductase (ANR) reduces anthocyanidins to flavan-3-ols. In addition to their sequences, the 3D structures of recombinant DFR, FNR and ANR from sorghum and switchgrass showed a high level of similarity. The catalytic mechanism, substrate-specificity and key residues of three reductases were deduced from crystal structures, site-directed mutagenesis, molecular docking, kinetics, and thermodynamic ana-lyses. Although DFR displayed its highest activity against dihydroflavonols, it also showed activity against flavanones and anthocyanidins. It was inhibited by the flavonol quercetin and high concentrations of dihydroflavonols/flavonones. SbFNR1 and SbFNR2 did not show any activity against dihydroflavonols. However, SbFNR1 displayed activity against flavanones and ANR activity against two anthocyanidins, cyanidin and pelargonidin. Therefore, SbFNR1 and SbFNR2 could be specific ANR isozymes without delphinidin activity. Sorghum has high concentrations of 3-deoxyanthocyanidins in vivo, supporting the observed high activity of SbDFR against flavonols. Mining of expression data indicated substantial induction of these three reductase genes in both switchgrass and sorghum in response to biotic stress. Key signature sequences for proper DFR/ANR classification are proposed and could form the basis for future metabolic engineering of flavonoid metabolism.

6.
Appl Environ Microbiol ; 88(15): e0079122, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35867586

RESUMO

At a time when antibiotic resistance is seemingly ubiquitous worldwide, understanding the mechanisms responsible for successful emergence of new resistance genes may provide insights into the persistence and pathways of dissemination for antibiotic-resistant organisms in general. For example, Escherichia coli strains harboring a class A ß-lactamase-encoding gene (blaCTX-M-15) appear to be displacing strains that harbor a class C ß-lactamase gene (blaCMY-2) in Washington State dairy cattle. We cloned these genes with native promoters into low-copy-number plasmids that were then transformed into isogenic strains of E. coli, and growth curves were generated for two commonly administered antibiotics (ampicillin and ceftiofur). Both strains met the definition of resistance for ampicillin (≥32 µg/mL) and ceftiofur (≥16 µg/mL). Growth of the CMY-2-producing strain was compromised at 1,000 µg/mL ampicillin, whereas the CTX-M-15-producing strain was not inhibited in the presence of 3,000 µg/mL ampicillin or with most concentrations of ceftiofur, although there were mixed outcomes with ceftiofur metabolites. Consequently, in the absence of competing genes, E. coli harboring either gene would experience a selective advantage if exposed to these antibiotics. Successful emergence of CTX-M-15-producing strains where CMY-2-producing strains are already established, however, requires high concentrations of antibiotics that can only be found in the urine of treated animals (e.g., >2,000 µg/mL for ampicillin, based on literature). This ex vivo selection pressure may be important for the emergence of new and more efficient antibiotic resistance genes and likely for persistence of antibiotic-resistant bacteria in food animal populations. IMPORTANCE We studied the relative fitness benefits of a cephalosporin resistance enzyme (CTX-M-15) that is displacing a similar enzyme (CMY-2), which is extant in E. coli from dairy cattle in Washington State. In vitro experiments demonstrated that CTX-M-15 provides a significant fitness advantage, but only in the presence of very high concentrations of antibiotic that are only found when the antibiotic ampicillin, and to a lesser extent ceftiofur, is excreted in urine from treated animals. As such, the increasing prevalence of bacteria with blaCTX-M-15 is likely occurring ex vivo. Interventions should focus on controlling waste from treated animals and, when possible, selecting antibiotics that are less likely to impact the proximal environment of treated animals.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos , Resistência às Cefalosporinas , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
7.
Int J Mol Sci ; 23(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563620

RESUMO

Cefotaximase-Munich (CTX-M) extended-spectrum beta-lactamases (ESBLs) are commonly associated with Gram-negative, hospital-acquired infections worldwide. Several beta-lactamase inhibitors, such as clavulanate, are used to inhibit the activity of these enzymes. To understand the mechanism of CTX-M-15 activity, we have determined the crystal structures of CTX-M-15 in complex with two specific classes of beta-lactam compounds, desfuroylceftiofur (DFC) and ampicillin, and an inhibitor, clavulanic acid. The crystal structures revealed that Ser70 and five other residues (Lys73, Tyr105, Glu166, Ser130, and Ser237) participate in catalysis and binding of those compounds. Based on analysis of steady-state kinetics, thermodynamic data, and molecular docking to both wild-type and S70A mutant structures, we determined that CTX-M-15 has a similar affinity for all beta-lactam compounds (ceftiofur, nitrocefin, DFC, and ampicillin), but with lower affinity for clavulanic acid. A catalytic mechanism for tested ß-lactams and two-step inhibition mechanism of clavulanic acid were proposed. CTX-M-15 showed a higher activity toward DFC and nitrocefin, but significantly lower activity toward ampicillin and ceftiofur. The interaction between CTX-M-15 and both ampicillin and ceftiofur displayed a higher entropic but lower enthalpic effect, compared with DFC and nitrocefin. DFC, a metabolite of ceftiofur, displayed lower entropy and higher enthalpy than ceftiofur. This finding suggests that compounds containing amine moiety (e.g., ampicillin) and the furfural moiety (e.g., ceftiofur) could hinder the hydrolytic activity of CTX-M-15.


Assuntos
Antibacterianos , beta-Lactamases , Ampicilina/farmacologia , Antibacterianos/química , Cefalosporinas , Ácido Clavulânico/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , beta-Lactamases/metabolismo
8.
Plant Physiol ; 183(3): 957-973, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32332088

RESUMO

Cinnamate 4-hydroxylase (C4H; CYP73A) is a cytochrome P450 monooxygenase associated externally with the endoplasmic reticulum of plant cells. The enzyme uses NADPH-cytochrome P450 reductase as a donor of electrons and hydroxylates cinnamic acid to form 4-coumaric acid in phenylpropanoid metabolism. In order to better understand the structure and function of this unique class of plant P450 enzymes, we have characterized the enzyme C4H1 from lignifying tissues of sorghum (Sorghum bicolor), encoded by Sobic.002G126600 Here we report the 1.7 Å resolution crystal structure of CYP73A33. The obtained structural information, along with the results of the steady-state kinetic analysis and the absorption spectroscopy titration, displays a high degree of similarity of the structural and functional features of C4H to those of other P450 proteins. Our data also suggest the presence of a putative allosteric substrate-binding site in a hydrophobic pocket on the enzyme surface. In addition, comparing the newly resolved structure with those of well-investigated cytochromes P450 from mammals and bacteria enabled us to identify those residues of critical functional importance and revealed a unique sequence signature that is potentially responsible for substrate specificity and catalytic selectivity of C4H.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Sorghum/genética , Sorghum/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Transcinamato 4-Mono-Oxigenase/metabolismo , Genes de Plantas , Estrutura Molecular
9.
Mol Microbiol ; 112(6): 1863-1874, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31580513

RESUMO

Ethylenediaminetetraacetate (EDTA) is the most abundant organic pollutant in surface water because of its extensive usage and the recalcitrance of stable metal-EDTA complexes. A few bacteria including Chelativorans sp. BNC1 can degrade EDTA with a monooxygenase to ethylenediaminediacetate (EDDA) and then use iminodiacetate oxidase (IdaA) to further degrade EDDA into ethylenediamine in a two-step oxidation. To alleviate EDTA pollution into the environment, deciphering the mechanisms of the metabolizing enzymes is an imperative prerequisite for informed EDTA bioremediation. Although IdaA cannot oxidize glycine, the crystal structure of IdaA shows its tertiary and quaternary structures similar to those of glycine oxidases. All confirmed substrates, EDDA, ethylenediaminemonoacetate, iminodiacetate and sarcosine are secondary amines with at least one N-acetyl group. Each substrate was bound at the re-side face of the isoalloxazine ring in a solvent-connected cavity. The carboxyl group of the substrate was bound by Arg265 and Arg307 . The catalytic residue, Tyr250 , is under the hydrogen bond network to facilitate its deprotonation acting as a general base, removing an acetate group of secondary amines as glyoxylate. Thus, IdaA is a secondary amine oxidase, and our findings improve understanding of molecular mechanism involved in the bioremediation of EDTA and the metabolism of secondary amines.


Assuntos
Ácido Edético/metabolismo , Monoaminoxidase , Phyllobacteriaceae/enzimologia , Aminas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Quelantes de Cálcio/metabolismo , Cristalografia por Raios X , Poluentes Ambientais/metabolismo , Monoaminoxidase/química , Monoaminoxidase/metabolismo
10.
Bioconjug Chem ; 31(10): 2362-2366, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32931248

RESUMO

Site-specific glycosylation of a functional recombinant protein thioester is reported. The thioester functionalized protein sfGFP-Y151ThioD, prepared by genetic code expansion, underwent native chemical ligation with the cysteine-conjugated glycans H-Cys-NH-GlcNAc and H-Cys-NH-(GlcNAc)2(Man)3 to give the corresponding cysteine-bridged glycoproteins. The intact glycoproteins, which retained their fluorescence, were characterized by top-down mass spectrometry and gel electrophoresis. The bridging cysteine provided a convenient handle for affinity chromatography purification of the glycoproteins via a removable biotin tag. Given the influence that specific glycoforms can have on a protein's function, the ability to attach a homogeneous glycan to an intact protein in a functional group controlled yet sequon-independent manner could find widespread application. These preliminary results set the stage for development of the expressed protein glycoligation (EPG) concept.


Assuntos
Cisteína/química , Glicoproteínas/síntese química , Biocatálise , Cisteína/síntese química , Escherichia coli/genética , Glicoproteínas/química , Glicoproteínas/genética , Modelos Moleculares , Técnicas de Síntese em Fase Sólida
11.
Proc Natl Acad Sci U S A ; 114(4): E638-E647, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069951

RESUMO

Calsequestrin, the only known protein with cyclical storage and supply of calcium as main role, is proposed to have other functions, which remain unproven. Voluntary movement and the heart beat require this calcium flow to be massive and fast. How does calsequestrin do it? To bind large amounts of calcium in vitro, calsequestrin must polymerize and then depolymerize to release it. Does this rule apply inside the sarcoplasmic reticulum (SR) of a working cell? We answered using fluorescently tagged calsequestrin expressed in muscles of mice. By FRAP and imaging we monitored mobility of calsequestrin as [Ca2+] in the SR--measured with a calsequestrin-fused biosensor--was lowered. We found that calsequestrin is polymerized within the SR at rest and that it depolymerized as [Ca2+] went down: fully when calcium depletion was maximal (a condition achieved with an SR calcium channel opening drug) and partially when depletion was limited (a condition imposed by fatiguing stimulation, long-lasting depolarization, or low drug concentrations). With fluorescence and electron microscopic imaging we demonstrated massive movements of calsequestrin accompanied by drastic morphological SR changes in fully depleted cells. When cells were partially depleted no remodeling was found. The present results support the proposed role of calsequestrin in termination of calcium release by conformationally inducing closure of SR channels. A channel closing switch operated by calsequestrin depolymerization will limit depletion, thereby preventing full disassembly of the polymeric calsequestrin network and catastrophic structural changes in the SR.


Assuntos
Cálcio/metabolismo , Calsequestrina/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Canais de Cálcio/metabolismo , Camundongos , Miocárdio/metabolismo
12.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486296

RESUMO

The widespread use of synthetic aminopolycarboxylates, such as ethylenediaminetetraacetate (EDTA), as chelating agents has led to their contamination in the environment as stable metal-chelate complexes. Microorganisms can transport free EDTA, but not metal-EDTA complexes, into cells for metabolism. An ABC-type transporter for free EDTA uptake in Chelativorans sp. BNC1 was investigated to understand the mechanism of the ligand selectivity. We solved the X-ray crystal structure of the periplasmic EDTA-binding protein (EppA) and analyzed its structure-function relations through isothermal titration calorimetry, site-directed mutagenesis, molecular docking, and quantum chemical analysis. EppA had high affinities for EDTA and other aminopolycarboxylates, which agrees with structural analysis, showing that its binding pocket could accommodate free aminopolycarboxylates. Further, key amino acid residues involved in the binding were identified. Our results suggest that EppA is a general binding protein for the uptake of free aminopolycarboxylates. This finding suggests that bacterial cells import free aminopolycarboxylates, explaining why stable metal-chelate complexes are resistant to degradation, as they are not transported into the cells for degradation.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Carboxílicos/metabolismo , Ácido Edético/química , Proteínas Periplásmicas de Ligação/metabolismo , Phyllobacteriaceae/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Calorimetria , Quelantes/química , Cristalografia por Raios X , Ligantes , Luz , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Espalhamento de Radiação , Eletricidade Estática , Termodinâmica
13.
Biochemistry ; 58(38): 3960-3970, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31469273

RESUMO

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR), in most organisms, catalyzes the four-electron reduction of the thioester (S)-HMG-CoA to the primary alcohol (R)-mevalonate, utilizing NADPH as the hydride donor. In some organisms, including the opportunistic lung pathogen Burkholderia cenocepacia, it catalyzes the reverse reaction, utilizing NAD+ as a hydride acceptor in the oxidation of mevalonate. B. cenocepacia HMGR has been previously shown to exist as an ensemble of multiple non-additive oligomeric states, each with different levels of enzymatic activity, suggesting that the enzyme exhibits characteristics of the morpheein model of allostery. We have characterized a number of factors, including pH, substrate concentration, and enzyme concentration, that modulate the structural transitions that influence the interconversion among the multiple oligomers. We have also determined the crystal structure of B. cenocepacia HMGR in the hexameric state bound to coenzyme A and ADP. This hexameric assembly provides important clues about how the transition among oligomers might occur, and why B. cenocepacia HMGR, unique among characterized HMGRs, exhibits morpheein-like behavior.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia cenocepacia/enzimologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Estrutura Quaternária de Proteína , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Coenzima A/química , Cristalografia por Raios X , Ensaios Enzimáticos , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
14.
Plant Physiol ; 176(2): 1452-1468, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29196539

RESUMO

Phenylalanine ammonia-lyase (PAL) is the first enzyme of the general phenylpropanoid pathway catalyzing the nonoxidative elimination of ammonia from l-phenylalanine to give trans-cinnamate. In monocots, PAL also displays tyrosine ammonia lyase (TAL) activity, leading to the formation of p-coumaric acid. The catalytic mechanism and substrate specificity of a major PAL from sorghum (Sorghum bicolor; SbPAL1), a strategic plant for bioenergy production, were deduced from crystal structures, molecular docking, site-directed mutagenesis, and kinetic and thermodynamic analyses. This first crystal structure of a monocotyledonous PAL displayed a unique conformation in its flexible inner loop of the 4-methylidene-imidazole-5-one (MIO) domain compared with that of dicotyledonous plants. The side chain of histidine-123 in the MIO domain dictated the distance between the catalytic MIO prosthetic group created from 189Ala-Ser-Gly191 residues and the bound l-phenylalanine and l-tyrosine, conferring the deamination reaction through either the Friedel-Crafts or E2 reaction mechanism. Several recombinant mutant SbPAL1 enzymes were generated via structure-guided mutagenesis, one of which, H123F-SbPAL1, has 6.2 times greater PAL activity without significant TAL activity. Additional PAL isozymes of sorghum were characterized and categorized into three groups. Taken together, this approach identified critical residues and explained substrate preferences among PAL isozymes in sorghum and other monocots, which can serve as the basis for the engineering of plants with enhanced biomass conversion properties, disease resistance, or nutritional quality.


Assuntos
Fenilalanina Amônia-Liase/química , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sorghum/enzimologia , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilalanina Amônia-Liase/genética , Filogenia , Proteínas de Plantas/genética , Conformação Proteica , Especificidade por Substrato , Termodinâmica , Tirosina/genética , Tirosina/metabolismo
15.
J Exp Bot ; 70(5): 1483-1495, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30690555

RESUMO

Oxygenated membrane fatty acid derivatives termed oxylipins play important roles in plant defense against biotic and abiotic cues. Plants challenged by insect pests, for example, synthesize a blend of different defense compounds that include volatile aldehydes and jasmonic acid (JA), among others. Because all oxylipins are derived from the same pathway, we investigated how their synthesis might be regulated, focusing on two closely related atypical cytochrome P450 enzymes designated CYP74A and CYP74B, respectively, allene oxide synthase (AOS) and hydroperoxide lyase (HPL). These enzymes compete for the same substrate but give rise to different products: the final product of the AOS branch of the oxylipin pathway is JA, while those of the HPL branch comprise volatile aldehydes and alcohols. AOS and HPL are plastid envelope enzymes in Arabidopsis thaliana but accumulate at different locations. Biochemical experiments identified AOS as a constituent of complexes also containing lipoxygenase 2 (LOX2) and allene oxide cyclase (AOC), which catalyze consecutive steps in JA precursor biosynthesis, while excluding the concurrent HPL reaction. Based on published X-ray data, the structure of this complex was modelled and amino acids involved in catalysis and subunit interactions predicted. Genetic studies identified the microRNA 319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes and CORONATINE INSENSITIVE 1 (COI1) as controlling JA production through the LOX2-AOS-AOC2 complex. Together, our results define a molecular branch point in oxylipin biosynthesis that allows fine-tuning of the plant's defense machinery in response to biotic and abiotic stimuli.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Sistema Enzimático do Citocromo P-450/genética , Oxigenases de Função Mista/genética , Oxilipinas/metabolismo , Plastídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/metabolismo
16.
Bioorg Med Chem Lett ; 29(16): 2116-2118, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31281019

RESUMO

The class A ß-lactamase BlaC is a cell surface expressed serine hydrolase of Mycobacterium tuberculosis (Mtb), one of the causative agents for Tuberculosis in humans. Mtb has demonstrated increased susceptibility to ß-lactam antibiotics upon inactivation of BlaC; thus, making BlaC a rational enzyme target for therapeutic agents. Herein, we present the synthesis and structure-activity-relationship data for the 1st-generation library of bis(benzoyl) phosphates (1-10). Substituent effects ranged from σp = -0.27 to 0.78 for electronic and π = -0.41 to 1.98 for hydrophobic parameters. Compounds 1, 4 and 5 demonstrated the greatest inhibitory potency against BlaC in a time-dependent manner (kobs = 0.212, 0.324, and 0.450 mn-1 respectively). Combined crystal structure data and mass spectrometric analysis of a tryptic digest for BlaC inactivated with 4 provided evidence that the mechanism of inactivation by this bis(benzoyl) phosphate scaffold occurs via phosphorylation of the active-site Ser-70, ultimately leading to an aged form of the enzyme.


Assuntos
Mycobacterium tuberculosis/enzimologia , Organofosfatos/química , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Domínio Catalítico , Cristalografia por Raios X , Ensaios Enzimáticos , Estrutura Molecular , Organofosfatos/síntese química , Fosforilação , Serina/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Inibidores de beta-Lactamases/síntese química
17.
Proc Natl Acad Sci U S A ; 113(12): 3383-8, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26969728

RESUMO

Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.


Assuntos
Cloroplastos/enzimologia , Lipoxigenase/metabolismo , Folhas de Planta/citologia , Folhas de Planta/enzimologia
18.
Int J Mol Sci ; 20(13)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269656

RESUMO

Mycobacterium tuberculosis, the pathogen responsible for tuberculosis (TB), is the leading cause of death from infectious disease worldwide. The class A serine ß-lactamase BlaC confers Mycobacterium tuberculosis resistance to conventional ß-lactam antibiotics. As the primary mechanism of bacterial resistance to ß-lactam antibiotics, the expression of a ß-lactamase by Mycobacterium tuberculosis results in hydrolysis of the ß-lactam ring and deactivation of these antibiotics. In this study, we conducted protein X-ray crystallographic analysis of the inactivation of BlaC, upon exposure to the inhibitor bis(benzoyl) phosphate. Crystal structure data confirms that serine ß-lactamase is phosphorylated at the catalytic serine residue (Ser-70) by this phosphate-based inactivator. This new crystallographic evidence suggests a mechanism for phosphorylation of BlaC inhibition by bis(benzoyl) phosphate over acylation. Additionally, we confirmed that bis(benzoyl) phosphate inactivated BlaC in a time-dependent manner.


Assuntos
Mycobacterium tuberculosis/enzimologia , Organofosfatos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , Sequência de Aminoácidos , Benzoatos/química , Benzoatos/farmacologia , Cristalografia por Raios X , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Organofosfatos/química , Conformação Proteica/efeitos dos fármacos , Alinhamento de Sequência , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Resistência beta-Lactâmica/efeitos dos fármacos , Inibidores de beta-Lactamases/química , beta-Lactamases/metabolismo
19.
Int J Mol Sci ; 20(12)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234561

RESUMO

The channeling of metabolites is an essential step of metabolic regulation in all living organisms. Multifunctional enzymes with defined domains for metabolite compartmentalization are rare, but in many cases, larger assemblies forming multimeric protein complexes operate in defined metabolic shunts. In Arabidopsis thaliana, a multimeric complex was discovered that contains a 13-lipoxygenase and allene oxide synthase (AOS) as well as allene oxide cyclase. All three plant enzymes are localized in chloroplasts, contributing to the biosynthesis of jasmonic acid (JA). JA and its derivatives act as ubiquitous plant defense regulators in responses to both biotic and abiotic stresses. AOS belongs to the superfamily of cytochrome P450 enzymes and is named CYP74A. Another CYP450 in chloroplasts, hydroperoxide lyase (HPL, CYP74B), competes with AOS for the common substrate. The products of the HPL reaction are green leaf volatiles that are involved in the deterrence of insect pests. Both enzymes represent non-canonical CYP450 family members, as they do not depend on O2 and NADPH-dependent CYP450 reductase activities. AOS and HPL activities are crucial for plants to respond to different biotic foes. In this mini-review, we aim to summarize how plants make use of the LOX2-AOS-AOC2 complex in chloroplasts to boost JA biosynthesis over volatile production and how this situation may change in plant communities during mass ingestion by insect pests.


Assuntos
Aldeído Liases/metabolismo , Arabidopsis/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência à Doença , Oxirredutases Intramoleculares/metabolismo , Aldeído Liases/química , Aldeído Liases/genética , Sequência de Aminoácidos , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Resistência à Doença/genética , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/genética , Redes e Vias Metabólicas , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Oxilipinas/metabolismo , Desenvolvimento Vegetal/genética , Ligação Proteica , Relação Estrutura-Atividade
20.
Plant Physiol ; 173(2): 1031-1044, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27956488

RESUMO

Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a strategic plant for bioenergy production, were deduced from crystal structures, site-directed mutagenesis, and kinetic and thermodynamic analyses. Although SbCCR1 displayed higher affinity for caffeoyl-CoA or p-coumaroyl-CoA than for feruloyl-CoA, the enzyme showed significantly higher activity for the latter substrate. Through molecular docking and comparisons between the crystal structures of the Vitis vinifera dihydroflavonol reductase and SbCCR1, residues threonine-154 and tyrosine-310 were pinpointed as being involved in binding CoA-conjugated phenylpropanoids. Threonine-154 of SbCCR1 and other CCRs likely confers strong substrate specificity for feruloyl-CoA over other cinnamoyl-CoA thioesters, and the T154Y mutation in SbCCR1 led to broader substrate specificity and faster turnover. Through data mining using our structural and biochemical information, four additional putative CCR genes were discovered from sorghum genomic data. One of these, SbCCR2, displayed greater activity toward p-coumaroyl-CoA than did SbCCR1, which could imply a role in the synthesis of defense-related lignin. Taken together, these findings provide knowledge about critical residues and substrate preference among CCRs and provide, to our knowledge, the first three-dimensional structure information for a CCR from a monocot species.


Assuntos
Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Sorghum/enzimologia , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Calorimetria , Cinética , Ligantes , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutação/genética , NADP/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA