Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241259633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887092

RESUMO

PURPOSE: We report a dosimetric study in whole breast irradiation (WBI) of plan robustness evaluation against position error with two radiation techniques: tangential intensity-modulated radiotherapy (T-IMRT) and multi-angle IMRT (M-IMRT). METHODS: Ten left-sided patients underwent WBI were selected. The dosimetric characteristics, biological evaluation and plan robustness were evaluated. The plan robustness quantification was performed by calculating the dose differences (Δ) of the original plan and perturbed plans, which were recalculated by introducing a 3-, 5-, and 10-mm shift in 18 directions. RESULTS: M-IMRT showed better sparing of high-dose volume of organs at risk (OARs), but performed a larger low-dose irradiation volume of normal tissue. The greater shift worsened plan robustness. For a 10-mm perturbation, greater dose differences were observed in T-IMRT plans in nearly all directions, with higher ΔD98%, ΔD95%, and ΔDmean of CTV Boost and CTV. A 10-mm shift in inferior (I) direction induced CTV Boost in T-IMRT plans a 1.1 (ΔD98%), 1.1 (ΔD95%), and 1.7 (ΔDmean) times dose differences greater than dose differences in M-IMRT plans. For CTV Boost, shifts in the right (R) and I directions generated greater dose differences in T-IMRT plans, while shifts in left (L) and superior (S) directions generated larger dose differences in M-IMRT plans. For CTV, T-IMRT plans showed higher sensitivity to a shift in the R direction. M-IMRT plans showed higher sensitivity to shifts in L, S, and I directions. For OARs, negligible dose differences were found in V20 of the lungs and heart. Greater ΔDmax of the left anterior descending artery (LAD) was seen in M-IMRT plans. CONCLUSION: We proposed a plan robustness evaluation method to determine the beam angle against position uncertainty accompanied by optimal dose distribution and OAR sparing.


Assuntos
Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias Unilaterais da Mama , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Feminino , Órgãos em Risco/efeitos da radiação , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias da Mama/radioterapia , Radiometria/métodos , Pessoa de Meia-Idade
2.
Bioengineering (Basel) ; 9(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35447691

RESUMO

PURPOSE: We aim to evaluate the robustness of multi-field IMRT and VMAT plans to target motion for left-sided BC radiotherapy. METHODS: The 7-field hybrid IMRT (7F-H-IMRT) and 2-arc VMAT (2A-VMAT) plans were generated for ten left-sided BC patients. Shifts of 3 mm, 5 mm, and 10 mm in six directions were introduced and the perturbed dose distributions were recalculated. The dose differences (∆D) of the original plan and perturbed plan corresponded to the plan robustness for the structure. RESULTS: Higher ∆D98%, ∆D95%, and ∆Dmean of CTV were observed in 2A-VMAT plans, which induced higher tumor control probability reductions. A higher ∆Dmean of CTV Boost was found in 7F-H-IMRT plans despite lower ∆D98% and ∆D95%. Shifts in the S-I direction exerted the largest effect on CTV and CTV Boost. Regarding OARs, shifts in R, P, and I directions contributed to increasing the received dose. The 2A-VMAT plans performed better dose sparing, but had a higher robustness in a high-dose volume of the left lung and heart. The 2A-VMAT plans decreased the max dose of LAD but exhibited lower robustness. CONCLUSION: The 2A-VMAT plans showed higher sensitivity to position deviation. Shifts in the S-I direction exerted the largest effect for CTV and CTV Boost.

3.
Radiat Oncol ; 17(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980178

RESUMO

PURPOSE: To evaluate the sensitivity to set up the uncertainty of VMAT plans in Nasopharyngeal carcinoma (NPC) treatment by proposing a plan robustness evaluation method. METHODS: 10 patients were selected for this study. A 2-arc volumetric-modulated arc therapy (VMAT) plan was generated for each patient using Varian Eclipse (13.6 Version) treatment planning system (TPS). 5 uncertainty plans (U-plans) were recalculated based on the first 5 times set-up errors acquired from cone-beam computer tomography (CBCT). The dose differences of the original plan and perturbed plan corresponded to the plan robustness for the structure. Tumor control probability (TCP) and normal tissues complication probability (NTCP) were calculated for biological evaluation. RESULTS: The mean dose differences of D98% and D95% (ΔD98% and ΔD95%) of PTVp were respectively 3.30 Gy and 2.02 Gy. The ΔD98% and ΔD95% of CTVp were 1.12 Gy and 0.58 Gy. The ΔD98% and ΔD95% of CTVn were 1.39 Gy and 1.03 Gy, distinctively lower than those in PTVn (2.8 Gy and 2.0 Gy). The CTV-to-PTV margin increased the robustness of CTVs. The ΔD98% and ΔD95% of GTVp were 0.56 Gy and 0.33 Gy. GTVn exhibited strong robustness with little variation of D98% (0.64 Gy) and D95% (0.39 Gy). No marked mean dose variations of Dmean were seen. The mean reduction of TCP (ΔTCP) in GTVp and CTVp were respectively 0.4% and 0.3%. The mean ΔTCPs of GTVn and CTVn were 0.92% and 1.3% respectively. The CTV exhibited the largest ΔTCP (2.2%). In OARs, the brain stem exhibited weak robustness due to their locations in the vicinity of PTV. Bilateral parotid glands were sensitive to set-up uncertainty with a mean reduction of NTCP (ΔNTCP) of 6.17% (left) and 7.70% (right). The Dmax of optical nerves and lens varied slightly. CONCLUSION: VMAT plans had a strong sensitivity to set-up uncertainty in NPC radiotherapy, with increasing risk of underdose of tumor and overdose of vicinal OARs. We proposed an effective method to evaluate the plan robustness of VMAT plans. Plan robustness and complexity should be taken into account in photon radiotherapy.


Assuntos
Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Radioterapia de Intensidade Modulada/métodos , Incerteza , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos
4.
Front Oncol ; 12: 987971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147903

RESUMO

Objective: The aim of this study was to investigate the impact of collimator angle optimization in single-isocenter coplanar volume modulated arc therapy (VMAT) stereotactic radiosurgery (SRS) for multiple metastases with respect to dosimetric quality and treatment delivery efficiency. In particular, this is achieved by a novel algorithm of sub-arc collimator angle optimization (SACAO). Methods: Twenty patients with multiple brain metastases were retrospectively included in this study. A multi-leaf collimator (MLC) conformity index (MCI) that is defined as the ratio of the area of target projection in the beam's eye view (BEV) to the related area fitted by MLC was applied. Accordingly, for each control point, 180 MCI values were calculated with a collimator angle interval of 1°. A two-dimensional heatmap of MCI as a function of control point and collimator angle for each full arc was generated. The optimal segmentation of sub-arcs was achieved by avoiding the worst MCI at each control point. Then, the optimal collimator angle for each sub-arc would be determined by maximizing the summation of MCI. Each patient was scheduled to undergo single-center coplanar VMAT SRS based on either the novel SACAO algorithm or the conventional VMAT with static collimator angle (ST-VMAT). The dosimetric parameters, field sizes, and the monitoring units (Mus) were evaluated. Results: The mean dose-volumetric parameters for the target volume of SACAO were comparable to ST-VMAT, while the conformity index (CI), homogeneity index (HI), and gradient index (GI) were reduced by SACAO. Improved sparing of organs at risk (OARs) was also obtained by SACAO. In particular, the SACAO method significantly (p < 0.01) reduced the field size (76.59 ± 32.55 vs. 131.95 ± 56.71 cm2) and MUs (655.35 ± 71.99 vs. 729.85 ± 73.52) by 41.11%. Conclusions: The SACAO method could be superior in improving the CI, HI, and GI of the targets as well as normal tissue sparing for multiple brain metastases SRS. In particular, SACAO has the potential of increasing treatment efficiency in terms of field size and MU.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA