Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364283

RESUMO

Transition-metal sulfides exaggerate higher theoretical capacities and were considered a type of prospective nanomaterials for energy storage; their inherent weaker conductivities and lower electrochemical active sites limited the commercial applications of the electrodes. The sheet-like nickel cobalt sulfide nanoparticles with richer sulfur vacancies were fabricated by a two-step hydrothermal technique. The sheet-like nanoparticles self-combination by ultrathin nanoparticles brought active electrodes entirely contacted with the electrolytes, benefiting ion diffusion and charges/discharges. Nevertheless, defect engineers of sulfur vacancy at the atomic level raise the intrinsic conductivities and improve the active sites for energy storage functions. As a result, the gained sulfur-deficient NiCo2S4 nanosheets consist of good specific capacitances of 971 F g-1 at 2 A g-1 and an excellent cycle span, retaining 88.7% of the initial capacitance over 3500 cyclings. Moreover, the values of capacitance results exhibited that the fulfilling characteristic of the sample was a combination of the hydrothermal procedure and the surface capacitances behavior. This novel investigation proposes a new perspective to importantly improve the electrochemical performances of the electrode by the absolute engineering of defects and morphologies in the supercapacitor field.

2.
J Mech Des N Y ; 141(3): 0323011-3230118, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30837782

RESUMO

Topology optimization for mechanism synthesis has been developed for the simultaneous determination of the number and dimension of mechanisms. However, these methods can be used to synthesize linkage mechanisms that consist only of links and joints because other types of mechanical elements such as gears cannot be simultaneously synthesized. In this study, we aim to develop a gradient-based topology optimization method which can be used to synthesize mechanisms consisting of both linkages and gears. For the synthesis, we propose a new ground model defined by two superposed design spaces: the linkage and gear design spaces. The gear design space is discretized by newly proposed gear blocks, each of which is assumed to rotate as an output gear, while the linkage design space is discretized by zero-length-spring-connected rigid blocks. Another set of zero-length springs is introduced to connect gear blocks to rigid blocks, and their stiffness values are varied to determine the existence of gears when they are necessary to produce the desired path. After the proposed topology-optimization-based synthesis formulation and its numerical implementation are presented, its effectiveness and validity are checked with various synthesis examples involving gear-linkage and linkage-only mechanisms.

3.
Sensors (Basel) ; 17(11)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104265

RESUMO

This paper presents a design optimization method based on theoretical analysis and numerical calculations, using a commercial multi-physics solver (e.g., ANSYS and ESI CFD-ACE+), for a 3D continuous model, to analyze the bending characteristics of an electrically heated bimorph microcantilever. The results from the theoretical calculation and numerical analysis are compared with those measured using a CCD camera and magnification lenses for a chip level microcantilever array fabricated in this study. The bimorph microcantilevers are thermally actuated by joule heating generated by a 0.4 µm thin-film Au heater deposited on 0.6 µm Si3N4 microcantilevers. The initial deflections caused by residual stress resulting from the thermal bonding of two metallic layers with different coefficients of thermal expansion (CTEs) are additionally considered, to find the exact deflected position. The numerically calculated total deflections caused by electrical actuation show differences of 10%, on average, with experimental measurements in the operating current region (i.e., ~25 mA) to prevent deterioration by overheating. Bimorph microcantilevers are promising components for use in various MEMS (Micro-Electro-Mechanical System) sensing applications, and their deflection characteristics in static mode sensing are essential for detecting changes in thermal stress on the surface of microcantilevers.

4.
Sensors (Basel) ; 15(11): 28807-25, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26580622

RESUMO

The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.

5.
Sensors (Basel) ; 15(9): 21785-806, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26334276

RESUMO

Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

6.
Sci Adv ; 10(23): eadn7772, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838136

RESUMO

Three-dimensional (3D) printers extruding filaments through a fixed nozzle encounter a conflict between high resolution, requiring small diameters, and high speed, requiring large diameters. This limitation is especially pronounced in multiscale architectures featuring both bulk and intricate elements. Here, we introduce adaptive nozzle 3D printing (AN3DP), a technique enabling dynamic alteration of nozzle diameter and cross-sectional shape during printing. The AN3DP nozzle consists of eight independently controllable, tendon-driven pins arrayed around a flexible, pressure-resistant membrane. The design incorporates a tapered angle optimized for extruding shear-thinning inks and a pointed tip suitable for constrained-space printing, such as conformal and embedded printing. AN3DP's efficacy is demonstrated through the fabrication of components with continuous gradients, eliminating the need for discretization, and achieving enhanced density and contour precision compared to traditional 3D printing methods. This platform substantially expands the scope of extrusion-based 3D printers, thus facilitating diverse applications, including bioprinting cell-laden and hierarchical implants with bone-like microarchitecture.

7.
J Colloid Interface Sci ; 677(Pt B): 161-170, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39142157

RESUMO

Two-dimensional nanosheets, with their distinct characteristics, are widely used in various applications such as water splitting, supercapacitors, catalysis etc. In this research, we produced Cu-BDC MOF nanosheets by using Cu2O nanotubes for metal ions and H2BDC as the organic linker. We combined these Cu-BDC MOF nanosheets with reduced graphene oxide (rGO) to form a nanocomposite. The collaboration between Cu-BDC MOF and rGO boosts both the catalytic reduction of 4-nitrophenol and the electrochemical capabilities. The conversion of 4-nitrophenol to 4-aminophenol is achieved using sodium borohydride as both a reducing agent and a catalyst. The study explores the impact of different concentrations of 4-nitrophenol and sodium borohydride on catalytic efficiency. The increase in sodium borohydride concentration enhances catalytic efficiency by providing more BH4- ions and electrons for the reduction process. The catalytic reduction process adheres to the Langmuir-Hinshelwood mechanism with apparent pseudo-first-order kinetics. Specifically, Cu-BDC MOF and rGO/Cu-BDC MOF exhibit specific capacities of 468.4 mA h/g and 656.4 mA h/g at a current density of 2 A/g, respectively, while also enhancing the operating voltage window. Therefore, electrodes based on rGO/Cu-BDC MOF nanosheets present a novel approach for environmental remediation and energy storage applications across various fields.

8.
Nanomaterials (Basel) ; 13(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678091

RESUMO

Semiconductor-based photocatalyst materials played an important role in the degradation of organic compounds in recent years. Photocatalysis is a simple, cost-effective, and environmentally friendly process for degrading organic compounds. In this work, vanadium pentoxide (V2O5) and V2O5/RGO (reduced graphene oxide) composite were synthesized by a hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Raman spectroscopy, and UV-Vis spectroscopic analysis, etc. Raman analysis shows the occurrence of RGO characteristic peaks in the composite and different vibrational modes of V2O5. The band gap of flake-shaped V2O5 is reduced and its light absorption capacity is enhanced by making its composite with RGO. The photocatalytic degradation of methylene blue (MB) was studied using both V2O5 and V2O5/RGO composite photocatalyst materials. The V2O5/RGO composite exhibits a superior photocatalytic performance to V2O5. Both catalyst and light play an important role in the degradation process.

9.
Materials (Basel) ; 15(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36079514

RESUMO

Among energy storage devices, supercapacitors have received considerable attention in recent years owing to their high-power density and extended cycle life. Researchers are currently making efforts to improve energy density using different asymmetric cell configurations, which may provide a wider potential window. Many studies have been conducted on positive electrodes for asymmetric supercapacitor devices; however, studies on negative electrodes have been limited. In this study, iron oxides with different morphologies were synthesized at various deposition temperatures using a simple chemical bath deposition method. A nanosphere-like morphology was obtained for α-Fe2O3. The obtained specific capacitance (Cs) of α-Fe2O3 was 2021 F/g at a current density of 4 A/g. The negative electrode showed an excellent capacitance retention of 96% over 5000 CV cycles. The fabricated asymmetric solid-state supercapacitor device based on α-Fe2O3-NF//Co3O4-NF exhibited a Cs of 155 F/g and an energy density of 21 Wh/kg at 4 A/g.

10.
J Colloid Interface Sci ; 606(Pt 1): 454-463, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399362

RESUMO

Tetracycline (TC) is a persistent antibiotic used in many countries, including China, India, and the United States of America (USA), because of its low price and effectiveness in enhancing livestock production. However, such antibiotics can have toxic effects on living organisms via complexation with metals, and their accumulation leading to teratogenicity and carcinogenicity. In this study, two-dimensional molybdenum disulfide/titanium dioxide (MoS2/TiO2) composites with different amounts of molybdenum disulfide (MoS2) were prepared via a simple, cost-effective, and pollution-free hydrothermal route. The synthesized MoS2/TiO2 microstructures were thoroughly characterized and their performance for the photocatalytic degradation of antibiotics such as TC was investigated. In the degradation experiments, the photocatalytic activities of TiO2 and the MoS2/TiO2 composites were compared, and the effects of different parameters, such as catalyst dose and electrolyte solution pH, were investigated. Under irradiation, the MoS2/TiO2 composites possessed superior photodegradation activity toward TC because of their excellent adsorption abilities, suitable band positions, and large surface areas as well as the effective charge-transfer ability of MoS2. Kinetics studies revealed that the photocatalytic degradation process followed pseudo-first-order reaction kinetics. In addition, a degradation mechanism for TC was proposed.


Assuntos
Molibdênio , Titânio , Antibacterianos , Dissulfetos , Tetraciclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA