Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896648

RESUMO

This manuscript presents the Microwave Temperature and Humidity Profiler (MTHP), a dual-band spectroradiometer designed for measuring multi-incidence angle temperature and humidity atmospheric profiles from an aircraft platform. The MTHP bands are at 60 GHz for measuring the oxygen complex lines, therefore at this band, MTHP has a hyperspectral radiometer able to provide 2048 channels over an 8 GHz bandwidth, and 183 GHz for measuring water vapor, which only uses four channels since this absorption band's spectral richness is simpler. The MTHP builds upon the Microwave Temperature Profiler (MTP) with the inclusion of the hyperspectral radiometer. The instrument's design, components, and calibration methods are discussed in detail, with a focus on the three-point calibration scheme involving internal calibration loads and static air temperature readings. Preliminary results from the Technological Innovation into Iodine and GV aircraft Environmental Research (TI3GER) campaign are presented, showcasing the instrument's performance during flights across diverse geographical regions. The manuscript presents successful antenna temperature measurements at 60 GHz and 183 GHz. The hyperspectral measurements are compared with a simulated antenna temperature using the Atmospheric Radiative Transfer Simulator (ARTS) showing an agreement better than R2 > 0.88 for three of the flights analyzed. Additionally, the manuscript draws attention to potential Radio Frequency Interference (RFI) effects observed during a specific flight, underscoring the instrument's sensitivity to external interference. This is the first-ever airborne demonstration of a broadband and hyperspectral multi-incidence angle 60 GHz measurement. Future work on the MTHP could result in an improved spatial resolution of the atmospheric temperature vertical profile and, hence, help in estimating the Planetary Boundary Layer (PBL) with better accuracy. The MTHP and its hyperspectral multi-incidence angle at 60 GHz have the potential to be a valuable tool for investigating the PBL's role in atmospheric dynamics, offering insights into its impact on Earth's energy, water, and carbon cycles.

2.
Earth Space Sci ; 4(8): 574-587, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29104900

RESUMO

This paper describes a forward radiative transfer model and retrieval system (FMRS) for the Tropospheric Water and cloud ICE (TWICE) CubeSat instrument. We use the FMRS to simulate radiances for the TWICE's 14 millimeter- and submillimeter-wavelength channels for a tropical atmospheric state produced by a Weather Research and Forecasting model simulation. We also perform simultaneous retrievals of cloud ice particle size, ice water content (IWC), water vapor content (H2O), and temperature from the simulated TWICE radiances using the FMRS. We show that the TWICE instrument is capable of retrieving ice particle size in the range of ~50-1000 µm in mass mean effective diameter with approximately 50% uncertainty. The uncertainties of other retrievals from TWICE are about 1 K for temperature, 50% for IWC, and 20% for H2O.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA