Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Anal Chem ; 96(21): 8604-8612, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691094

RESUMO

Chemical ionization (CI) atmospheric pressure interface mass spectrometry is a unique analytical technique for its low detection limits, softness to preserve molecular information, and selectivity for particular classes of species. Here, we present a fast polarity switching approach for highly sensitive online analysis of a wide range of trace species in complex samples using selective CI chemistries and high-resolution mass spectrometry. It is achieved by successfully coupling a multischeme chemical ionization inlet (MION) and an Orbitrap Fourier transform mass spectrometer. The capability to flexibly combine ionization chemistries from both polarities effectively extends the detectability compared to using only one ionization chemistry, as commonly used positive and negative reagent ions tend to be sensitive to different classes of species. We tested the performance of the MION-Orbitrap using reactive gaseous organic species generated by α-pinene ozonolysis in an environmental chamber and a standard mixture of 71 pesticides. Diethylammonium and nitrate are used as reagent ions in positive and negative polarities. We show that with a mass resolving power of 280,000, the MION-Orbitrap can switch and measure both polarities within 1 min, which is sufficiently fast and stable to follow the temporal evolution of reactive organic species and the thermal desorption profile of pesticides. We detected 23 of the 71 pesticides in the mixture using only nitrate as the reagent ion. Facilitated by polarity switching, we also detected 47 pesticides using diethylammonium, improving the total number of detected species to 59. For reactive organic species generated by α-pinene ozonolysis, we show that combining diethylammonium and nitrate addresses the need to measure oxygenated molecules in atmospheric environments with a wide range of oxidation states. These results indicate that the polarity switching MION-Orbitrap can promisingly serve as a versatile tool for the nontargeted chemical analysis of trace species in various applications.

2.
J Phys Chem A ; 127(18): 3976-3990, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37126596

RESUMO

Water and butanol are used as working fluids in condensation particle counters, and condensation of a single vapor onto an ion can be used as a simple model system for the study of ion-induced nucleation in the atmosphere. Motivated by this, we examine heterogeneous nucleation of water (H2O) and n-butanol (BuOH) vapors onto three positively (Li+, Na+, K+) and three negatively charged (F-, Cl-, Br-) ions using classical nucleation theory and computational quantum chemistry methods. We study phenomena that cannot be captured by Kelvin-Thomson equation for small nucleation ion cores. Our quantum chemistry calculations reveal the molecular mechanism behind ion-induced nucleation for each studied system. Typically, ions become solvated from all sides after several vapor molecules condense onto the ion. However, we show that the clusters of water and large negatively charged ions (Cl- and Br-) thermodynamically prefer the ion being migrated to the cluster surface. Although our methods generally do not show clear sign-preference for ion-water nucleation, we identified positive sign-preference for ion-butanol nucleation caused by the possibility to form stabilizing hydrogen bonds between butanol molecules condensed onto a positively charged ion. These bonds cannot form when butanol condenses onto a negatively charged ion. Therefore, we show that ion charge, its sign, as well as vapor properties have effects on the prenucleation and critical cluster/droplet sizes and also on the molecular mechanism of ion-induced nucleation.

3.
Environ Sci Technol ; 56(2): 770-778, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34806377

RESUMO

The understanding at a molecular level of ambient secondary organic aerosol (SOA) formation is hampered by poorly constrained formation mechanisms and insufficient analytical methods. Especially in developing countries, SOA related haze is a great concern due to its significant effects on climate and human health. We present simultaneous measurements of gas-phase volatile organic compounds (VOCs), oxygenated organic molecules (OOMs), and particle-phase SOA in Beijing. We show that condensation of the measured OOMs explains 26-39% of the organic aerosol mass growth, with the contribution of OOMs to SOA enhanced during severe haze episodes. Our novel results provide a quantitative molecular connection from anthropogenic emissions to condensable organic oxidation product vapors, their concentration in particle-phase SOA, and ultimately to haze formation.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Humanos
4.
J Phys Chem A ; 126(30): 5040-5049, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35862553

RESUMO

Highly oxygenated organic molecules (HOMs) are important sources of atmospheric aerosols. Resolving the molecular-level formation mechanisms of these HOMs from freshly emitted hydrocarbons improves the understanding of aerosol properties and their influence on the climate. In this study, we measure the electrical mobility and mass-to-charge ratio of α-pinene oxidation products using a secondary electrospray-differential mobility analyzer-mass spectrometer (SESI-DMA-MS). The mass-mobility spectrum of the oxidation products is measured with seven different reagent ions generated by the electrospray. We analyzed the mobility-mass spectra of the oxidation products C9-10H14-18O2-6. Our results show that acetate and chloride yield the highest charging efficiencies. Analysis of the mobility spectra suggests that the clusters have 1-5 isomeric structures (i.e., ion-molecule cluster structures with distinct mobilities), and the number is affected by the reagent ion. Most of the isomers are likely cluster isomers originating from binding of the reagent ion to different sites of the molecule. By comparing the number of observed isomers and measured mobilities and collision cross sections between standard pinanediol and pinonic acid to the values observed for C10H18O2 and C10H16O3 produced from oxidation of α-pinene, we confirm that pinanediol and pinonic acid are the only isomers for these elemental compositions in our experimental conditions. Our study shows that the SESI-DMA-MS produces new information from the first steps of oxidation of α-pinene.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Monoterpenos Bicíclicos , Íons , Monoterpenos/análise , Monoterpenos/química , Ozônio/química
5.
Nature ; 537(7621): 532-534, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27580030

RESUMO

Homogeneous nucleation and subsequent cluster growth leads to the formation of new aerosol particles in the atmosphere. The nucleation of sulfuric acid and organic vapours is thought to be responsible for the formation of new particles over continents, whereas iodine oxide vapours have been implicated in particle formation over coastal regions. The molecular clustering pathways that are involved in atmospheric particle formation have been elucidated in controlled laboratory studies of chemically simple systems, but direct molecular-level observations of nucleation in atmospheric field conditions that involve sulfuric acid, organic or iodine oxide vapours have yet to be reported. Here we present field data from Mace Head, Ireland, and supporting data from northern Greenland and Queen Maud Land, Antarctica, that enable us to identify the molecular steps involved in new particle formation in an iodine-rich, coastal atmospheric environment. We find that the formation and initial growth process is almost exclusively driven by iodine oxoacids and iodine oxide vapours, with average oxygen-to-iodine ratios of 2.4 found in the clusters. On the basis of this high ratio, together with the high concentrations of iodic acid (HIO3) observed, we suggest that cluster formation primarily proceeds by sequential addition of HIO3, followed by intracluster restructuring to I2O5 and recycling of water either in the atmosphere or on dehydration. Our study provides ambient atmospheric molecular-level observations of nucleation, supporting the previously suggested role of iodine-containing species in the formation of new aerosol particles, and identifies the key nucleating compound.

6.
Nature ; 533(7604): 521-6, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225125

RESUMO

Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.


Assuntos
Aerossóis/química , Atmosfera/química , Mudança Climática , Íons/química , Oxigênio/química , Material Particulado/química , Poluição do Ar/análise , Monoterpenos Bicíclicos , Radiação Cósmica , Atividades Humanas , Monoterpenos/química , Oxirredução , Ozônio/química , Tamanho da Partícula , Teoria Quântica , Ácidos Sulfúricos/análise , Volatilização
7.
Nature ; 533(7604): 527-31, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225126

RESUMO

About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

8.
Ecotoxicol Environ Saf ; 243: 114023, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030686

RESUMO

Ultrafine particles (UFPs) usually explosive growth during new particle formation (NPF) events. However, the risk of exposure to UFPs on NPF days has been ignored due to the prevalence of mass-based air quality standards. In this study, the daily deposited doses, i.e., the daily deposited particle number dose (DPNd), mass dose (DPMd), and surface area dose (DPSd), of ambient particles in the human respiratory tract in Beijing were evaluated based on the particle number size distribution (3 nm-10 µm) from June 2018 to May 2019 utilizing a Multiple-Path Particle Dosimetry Model (MPPD) after the hygroscopic growth of particles in the respiratory tract had been accounted for. Our observations showed a high frequency (72.6%) of NPF on excellent air quality days, with daily mean PM2.5 concentrations less than 35 µg m-3. The daily DPNd on excellent air quality days was comparable with that on polluted days, although the DPMd on excellent air quality days was as low as 15.6% of that on polluted days. The DPNd on NPF days was ~1.3 times that on non-NPF days. The DPNd in respiratory tract regions decreased in the order: tracheobronchial (TB) > pulmonary (PUL) > extrathoracic (ET) on NPF days, while it was PUL > TB > ET on non-NPF days. The number of deposited nucleation mode particles, which were deposited mainly in the TB region (45%), was 2 times higher on NPF days than that on non-NPF days. Our results demonstrated that the deposition potential due to UFPs in terms of particle number concentrations is high in Beijing regardless of the aerosol mass concentration. More toxicological studies related to UFPs on NPF days, especially those targeting tracheobronchial and pulmonary impairment, are required in the future.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Pequim , Monitoramento Ambiental , Humanos , Pulmão/química , Tamanho da Partícula , Material Particulado/análise
9.
Faraday Discuss ; 226: 334-347, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290451

RESUMO

Atmospheric gas-to-particle conversion is a crucial or even dominant contributor to haze formation in Chinese megacities in terms of aerosol number, surface area and mass. Based on our comprehensive observations in Beijing during 15 January 2018-31 March 2019, we are able to show that 80-90% of the aerosol mass (PM2.5) was formed via atmospheric reactions during the haze days and over 65% of the number concentration of haze particles resulted from new particle formation (NPF). Furthermore, the haze formation was faster when the subsequent growth of newly formed particles was enhanced. Our findings suggest that in practice almost all present-day haze episodes originate from NPF, mainly since the direct emission of primary particles in Beijing has considerably decreased during recent years. We also show that reducing the subsequent growth rate of freshly formed particles by a factor of 3-5 would delay the buildup of haze episodes by 1-3 days. Actually, this delay would decrease the length of each haze episode, so that the number of annual haze days could be approximately halved. Such improvement in air quality can be achieved with targeted reduction of gas-phase precursors for NPF, mainly dimethyl amine and ammonia, and further reductions of SO2 emissions. Furthermore, reduction of anthropogenic organic and inorganic precursor emissions would slow down the growth rate of newly-formed particles and consequently reduce the haze formation.

10.
J Phys Chem A ; 125(14): 3025-3036, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33788572

RESUMO

Using a combination of quantum chemistry and cluster size distribution dynamics, we study the heterogeneous nucleation of n-butanol and water onto sodium chloride (NaCl)10 seeds at different butanol saturation ratios and relative humidities. We also investigate how the heterogeneous nucleation of butanol is affected by the seed size through comparing (NaCl)5, (NaCl)10, and (NaCl)25 seeds and by seed electrical charge through comparing (Na10Cl9)+, (NaCl)10, and (Na9Cl10)- seeds. Butanol is a common working fluid for condensation particle counters used in atmospheric aerosol studies, and NaCl seeds are frequently used for calibration purposes and as model systems, for example, sea spray aerosol. In general, our simulations reproduce the experimentally observed trends for the NaCl-BuOH-H2O system, such as the increase of nucleation rate with relative humidity and with temperature (at constant supersaturation of butanol). Our results also provide molecular-level insights into the vapor-seed interactions driving the first steps of the heterogeneous nucleation process. The main purpose of this work is to show that theoretical studies can provide molecular understanding of initial steps of heterogeneous nucleation and that it is possible to find cost-effective yet accurate-enough combinations of methods for configurational sampling and energy evaluation to successfully model heterogeneous nucleation of multicomponent systems. In the future, we anticipate that such simulations can also be extended to chemically more complex seeds.

11.
Environ Sci Technol ; 54(14): 8547-8557, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32609510

RESUMO

Understanding the atmospheric new particle formation (NPF) process within the global range is important for revealing the budget of atmospheric aerosols and their impacts. We investigated the seasonal characteristics of NPF in the urban environment of Beijing. Aerosol size distributions down to ∼1 nm and H2SO4 concentration were measured during 2018-2019. The observed formation rate of 1.5 nm particles (J1.5) is significantly higher than those in the clean environment, e.g., Hyytiälä, whereas the growth rate is not significantly different. Both J1.5 and NPF frequency in urban Beijing show a clear seasonal variation with maxima in winter and minima in summer, while the observed growth rates are generally within the same range around the year. We show that ambient temperature is a governing factor driving the seasonal variation of J1.5. In contrast, the condensation sink and the daily maximum H2SO4 concentration show no significant seasonal variation during the NPF periods. In all four seasons, condensation of H2SO4 and (H2SO4)n(amine)n clusters contributes significantly to the growth rates in the sub-3 nm size range, whereas it is less important for the observed growth rates of particles above 3 nm. Therefore, other species are always needed for the growth of larger particles.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
12.
J Phys Chem A ; 124(50): 10527-10539, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33267578

RESUMO

Condensation particle counter (CPC) instruments are commonly used to detect atmospheric nanoparticles. They operate on the basis of condensing an organic working fluid on the nanoparticle seeds to grow the particles to a detectable size, and at the size of few nanometers, their efficiency depends on how well the working fluid interacts with the seeds under the measurement conditions. This study models the first steps of heterogeneous nucleation of two working fluids commonly used in CPCs (diethylene glycol (DEG) and n-butanol) onto two positively charged seeds, ammonium bisulfate and tetramethylammonium bromide. The nucleation process is modeled on a molecular level using a combination of systematic configurational sampling and density functional theory (DFT). We take into account the conformational flexibility of DEG and n-butanol and determine the key factors that can improve the efficiency of nanoparticle measurements by CPCs. The results show that hydrogen bonding between the seed and the working fluid molecules is central to the adsorption of the first DEG/n-butanol molecules onto the seeds. However, intermolecular hydrogen bonding between the adsorbed molecules can also enhance the nucleation process for the weakly adsorbing vapor molecules. Accordingly, the heterogeneous nucleation probability is higher for working fluid-nanoparticle combinations with a higher potential for hydrogen bonding; in this case, DEG and ammonium bisulfate. Moreover, conformational analysis and methodology evaluations indicate that the consideration of adsorbate conformers and step-wise addition of the vapor molecules to the seeds is not essential for qualitative modeling of heterogeneous nucleation systems, at least for systems where the adsorbate and seed chemical properties are clearly different. This is the first molecular-level modeling study reporting detailed chemical reasons for experimentally observed seed and working fluid preferences in CPCs and reproducing the experimental observations. Our presented approach can be likely used for predicting preferences in similar nucleating systems.

13.
Nature ; 506(7489): 476-9, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24572423

RESUMO

Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.


Assuntos
Aerossóis/química , Modelos Químicos , Compostos Orgânicos Voláteis/química , Aerossóis/análise , Aerossóis/metabolismo , Atmosfera/química , Monoterpenos Bicíclicos , Clima , Ecossistema , Finlândia , Gases/análise , Gases/química , Monoterpenos/química , Oxirredução , Ozônio/química , Tamanho da Partícula , Árvores/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Volatilização
14.
Nature ; 502(7471): 359-63, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24097350

RESUMO

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.


Assuntos
Aminas/química , Atmosfera/química , Material Particulado/química , Ácidos Sulfúricos/química , Radiação Cósmica , Dimetilaminas/química , Efeito Estufa , Atividades Humanas , Modelos Químicos , Teoria Quântica , Dióxido de Enxofre/química
15.
Proc Natl Acad Sci U S A ; 113(43): 12053-12058, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27790989

RESUMO

The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.


Assuntos
Aerossóis/análise , Atmosfera/análise , Modelos Estatísticos , Aerossóis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera/química , Clima , Simulação por Computador , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Desenvolvimento Industrial/história , Incerteza
16.
Proc Natl Acad Sci U S A ; 111(42): 15019-24, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288761

RESUMO

For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.

17.
J Am Chem Soc ; 136(44): 15596-606, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25283472

RESUMO

The prompt formation of highly oxidized organic compounds in the ozonolysis of cyclohexene (C6H10) was investigated by means of laboratory experiments together with quantum chemical calculations. The experiments were performed in borosilicate glass flow tube reactors coupled to a chemical ionization atmospheric pressure interface time-of-flight mass spectrometer with a nitrate ion (NO3(-))-based ionization scheme. Quantum chemical calculations were performed at the CCSD(T)-F12a/VDZ-F12//ωB97XD/aug-cc-pVTZ level, with kinetic modeling using multiconformer transition state theory, including Eckart tunneling corrections. The complementary investigation methods gave a consistent picture of a formation mechanism advancing by peroxy radical (RO2) isomerization through intramolecular hydrogen shift reactions, followed by sequential O2 addition steps, that is, RO2 autoxidation, on a time scale of seconds. Dimerization of the peroxy radicals by recombination and cross-combination reactions is in competition with the formation of highly oxidized monomer species and is observed to lead to peroxides, potentially diacyl peroxides. The molar yield of these highly oxidized products (having O/C > 1 in monomers and O/C > 0.55 in dimers) from cyclohexene ozonolysis was determined as (4.5 ± 3.8)%. Fully deuterated cyclohexene and cis-6-nonenal ozonolysis, as well as the influence of water addition to the system (either H2O or D2O), were also investigated in order to strengthen the arguments on the proposed mechanism. Deuterated cyclohexene ozonolysis resulted in a less oxidized product distribution with a lower yield of highly oxygenated products and cis-6-nonenal ozonolysis generated the same monomer product distribution, consistent with the proposed mechanism and in agreement with quantum chemical modeling.

18.
Environ Sci Technol ; 48(23): 13675-84, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25406110

RESUMO

We investigated the nucleation of sulfuric acid together with two bases (ammonia and dimethylamine), at the CLOUD chamber at CERN. The chemical composition of positive, negative, and neutral clusters was studied using three Atmospheric Pressure interface-Time Of Flight (APi-TOF) mass spectrometers: two were operated in positive and negative mode to detect the chamber ions, while the third was equipped with a nitrate ion chemical ionization source allowing detection of neutral clusters. Taking into account the possible fragmentation that can happen during the charging of the ions or within the first stage of the mass spectrometer, the cluster formation proceeded via essentially one-to-one acid-base addition for all of the clusters, independent of the type of the base. For the positive clusters, the charge is carried by one excess protonated base, while for the negative clusters it is carried by a deprotonated acid; the same is true for the neutral clusters after these have been ionized. During the experiments involving sulfuric acid and dimethylamine, it was possible to study the appearance time for all the clusters (positive, negative, and neutral). It appeared that, after the formation of the clusters containing three molecules of sulfuric acid, the clusters grow at a similar speed, independent of their charge. The growth rate is then probably limited by the arrival rate of sulfuric acid or cluster-cluster collision.


Assuntos
Amônia/química , Dimetilaminas/química , Espectrometria de Massas/métodos , Ácidos Sulfúricos/química , Aerossóis/química , Álcalis/química , Pressão Atmosférica , Íons/química , Espectrometria de Massas/instrumentação
19.
J Extracell Biol ; 3(4): e149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38938848

RESUMO

Isolation of extracellular vesicles (EV) has been developing rapidly in parallel with the interest in EVs. However, commonly utilized protocols may not suit more challenging sample matrixes and could potentially yield suboptimal results. Knowing and assessing the pitfalls of isolation procedure to be used, should be involved to some extent for EV analytics. EVs in cow milk are of great interest due to their abundancy and large-scale availability as well as their cross-species bioavailability and possible use as drug carriers. However, the characteristics of milk EVs overlap with those of other milk components. This makes it difficult to isolate and study EVs individually. There exists also a lack of consensus for isolation methods. In this study, we demonstrated the differences between various differential centrifugation-based approaches for isolation of large quantities of EVs from cow milk. Samples were further purified with gradient centrifugation and size exclusion chromatography (SEC) and differences were analyzed. Quality measurements were conducted on multiple independent platforms. Particle analysis, electron microscopy and RNA analysis were used, to comprehensively characterize the isolated samples and to identify the limitations and possible sources of contamination in the EV isolation protocols. Vesicle concentration to protein ratio and RNA to protein ratios were observed to increase as samples were purified, suggesting co-isolation with major milk proteins in direct differential centrifugation protocols. We demonstrated a novel size assessment of vesicles using a particle mobility analyzer that matched the sizing using electron microscopy in contrast to commonly utilized nanoparticle tracking analysis. Based on the standards of the International Society for Extracellular Vesicles and the quick checklist of EV-Track.org for EV isolation, we emphasize the need for complete characterization and validation of the isolation protocol with all EV-related work to ensure the accuracy of results and allow further analytics and experiments.

20.
ACS Omega ; 8(29): 25749-25757, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37521638

RESUMO

In this work, the detection characteristics of a large group of common pesticides were investigated using a multi-scheme chemical ionization inlet (MION) with a thermal desorption unit (Karsa Ltd.) connected to an Orbitrap (Velos Pro, Thermo Fisher Scientific) mass spectrometer. Standard pesticide mixtures, fruit extracts, untreated fruit juice, and whole fruit samples were inspected. The pesticide mixtures contained 1 ng of each individual target. Altogether, 115 pesticides were detected, with a set of different reagents (i.e., dibromomethane, acetonylacetone, and water) in different polarity modes. The measurement methodology presented was developed to minimize the common bottlenecks originating from sample pretreatments and nonetheless was able to retrieve 92% of the most common pesticides regularly analyzed with standardized UHPLC-MSMS (ultra-high-performance liquid chromatography with tandem mass spectrometry) procedures. The fraction of detected targets of two standard pesticide mixtures generally quantified by GC-MSMS (gas chromatography with tandem mass spectrometry) methodology was much less, equaling 45 and 34%. The pineapple swabbing experiment led to the detection of fludioxonil and diazinon below their respective maximum residue levels (MRLs), whereas measurements of untreated pineapple juice and other fruit extracts led to retrieval of dimethomorph, dinotefuran, imazalil, azoxystrobin, thiabendazole, fludioxonil, and diazinon, also below their MRL. The potential for mutual detection was investigated by mixing two standard solutions and by spiking an extract of fruit with a pesticide's solution, and subsequently, individual compounds were simultaneously detected. For a selected subgroup of compounds, the bromide (Br-) chemical ionization characteristics were further inspected using quantum chemical computations to illustrate the structural features leading to their sensitive detection. Importantly, pesticides could be detected in actual extract and fruit samples, which demonstrates the potential of our fast screening method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA