Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 29(12): 1839-1855, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37816550

RESUMO

The tremendous rate with which data is generated and analysis methods emerge makes it increasingly difficult to keep track of their domain of applicability, assumptions, limitations, and consequently, of the efficacy and precision with which they solve specific tasks. Therefore, there is an increasing need for benchmarks, and for the provision of infrastructure for continuous method evaluation. APAeval is an international community effort, organized by the RNA Society in 2021, to benchmark tools for the identification and quantification of the usage of alternative polyadenylation (APA) sites from short-read, bulk RNA-sequencing (RNA-seq) data. Here, we reviewed 17 tools and benchmarked eight on their ability to perform APA identification and quantification, using a comprehensive set of RNA-seq experiments comprising real, synthetic, and matched 3'-end sequencing data. To support continuous benchmarking, we have incorporated the results into the OpenEBench online platform, which allows for continuous extension of the set of methods, metrics, and challenges. We envisage that our analyses will assist researchers in selecting the appropriate tools for their studies, while the containers and reproducible workflows could easily be deployed and extended to evaluate new methods or data sets.


Assuntos
Benchmarking , RNA , RNA/genética , RNA-Seq , Poliadenilação , Análise de Sequência de RNA/métodos
2.
Nucleic Acids Res ; 50(6): 3096-3114, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35234914

RESUMO

The mammalian cleavage factor I (CFIm) has been implicated in alternative polyadenylation (APA) in a broad range of contexts, from cancers to learning deficits and parasite infections. To determine how the CFIm expression levels are translated into these diverse phenotypes, we carried out a multi-omics analysis of cell lines in which the CFIm25 (NUDT21) or CFIm68 (CPSF6) subunits were either repressed by siRNA-mediated knockdown or over-expressed from stably integrated constructs. We established that >800 genes undergo coherent APA in response to changes in CFIm levels, and they cluster in distinct functional classes related to protein metabolism. The activity of the ERK pathway traces the CFIm concentration, and explains some of the fluctuations in cell growth and metabolism that are observed upon CFIm perturbations. Furthermore, multiple transcripts encoding proteins from the miRNA pathway are targets of CFIm-dependent APA. This leads to an increased biogenesis and repressive activity of miRNAs at the same time as some 3' UTRs become shorter and presumably less sensitive to miRNA-mediated repression. Our study provides a first systematic assessment of a core set of APA targets that respond coherently to changes in CFIm protein subunit levels (CFIm25/CFIm68). We describe the elicited signaling pathways downstream of CFIm, which improve our understanding of the key role of CFIm in integrating RNA processing with other cellular activities.


Assuntos
MicroRNAs , Poliadenilação , Regiões 3' não Traduzidas , Animais , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fibrinogênio/genética , Mamíferos/genética , MicroRNAs/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
3.
Nucleic Acids Res ; 49(1): 25-37, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33300035

RESUMO

Many microRNAs regulate gene expression via atypical mechanisms, which are difficult to discern using native cross-linking methods. To ascertain the scope of non-canonical miRNA targeting, methods are needed that identify all targets of a given miRNA. We designed a new class of miR-CLIP probe, whereby psoralen is conjugated to the 3p arm of a pre-microRNA to capture targetomes of miR-124 and miR-132 in HEK293T cells. Processing of pre-miR-124 yields miR-124 and a 5'-extended isoform, iso-miR-124. Using miR-CLIP, we identified overlapping targetomes from both isoforms. From a set of 16 targets, 13 were differently inhibited at mRNA/protein levels by the isoforms. Moreover, delivery of pre-miR-124 into cells repressed these targets more strongly than individual treatments with miR-124 and iso-miR-124, suggesting that isomirs from one pre-miRNA may function synergistically. By mining the miR-CLIP targetome, we identified nine G-bulged target-sites that are regulated at the protein level by miR-124 but not isomiR-124. Using structural data, we propose a model involving AGO2 helix-7 that suggests why only miR-124 can engage these sites. In summary, access to the miR-124 targetome via miR-CLIP revealed for the first time how heterogeneous processing of miRNAs combined with non-canonical targeting mechanisms expand the regulatory range of a miRNA.


Assuntos
Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Modelos Genéticos , Regiões 3' não Traduzidas/genética , Motivos de Aminoácidos , Proteínas Argonautas/química , Sequência de Bases , Sítios de Ligação , Biotina , Reagentes de Ligações Cruzadas/farmacologia , DNA Complementar/genética , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Imunoprecipitação , MicroRNAs/antagonistas & inibidores , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Fotoquímica , Análise de Sequência de DNA , Estreptavidina , Trioxsaleno/efeitos da radiação
4.
Nucleic Acids Res ; 48(D1): D174-D179, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31617559

RESUMO

Generated by 3' end cleavage and polyadenylation at alternative polyadenylation (poly(A)) sites, alternative terminal exons account for much of the variation between human transcript isoforms. More than a dozen protocols have been developed so far for capturing and sequencing RNA 3' ends from a variety of cell types and species. In previous studies, we have used these data to uncover novel regulatory signals and cell type-specific isoforms. Here we present an update of the PolyASite (https://polyasite.unibas.ch) resource of poly(A) sites, constructed from publicly available human, mouse and worm 3' end sequencing datasets by enforcing uniform quality measures, including the flagging of putative internal priming sites. Through integrated processing of all data, we identified and clustered sites that are closely spaced and share polyadenylation signals, as these are likely the result of stochastic variations in processing. For each cluster, we identified the representative - most frequently processed - site and estimated the relative use in the transcriptome across all samples. We have established a modern web portal for efficient finding, exploration and export of data. Database generation is fully automated, greatly facilitating incorporation of new datasets and the updating of underlying genome resources.


Assuntos
Bases de Dados de Ácidos Nucleicos , Poliadenilação , Animais , Caenorhabditis elegans/genética , Humanos , Camundongos , Poli A/análise , Análise de Sequência de RNA
5.
RNA Biol ; 17(1): 33-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31522610

RESUMO

Post-transcriptional control of gene expression is mediated via RNA-binding proteins (RBPs) that interact with mRNAs in a combinatorial fashion. While recent global RNA interactome capture experiments expanded the repertoire of cellular RBPs quiet dramatically, little is known about the assembly of RBPs on particular mRNAs; and how these associations change and control the fate of the mRNA in drug-treatment conditions. Here we introduce a novel biochemical approach, termed tobramycin-based tandem RNA isolation procedure (tobTRIP), to quantify proteins associated with the 3'UTRs of cyclin-dependent kinase inhibitor 1B (CDKN1B/p27Kip1) mRNAs in vivo. P27Kip1 plays an important role in mediating a cell's response to cisplatin (CP), a widely used chemotherapeutic cancer drug that induces DNA damage and cell cycle arrest. We found that p27Kip1 mRNA is stabilized upon CP treatment of HEK293 cells through elements in its 3'UTR. Applying tobTRIP, we further compared the associated proteins in CP and non-treated cells, and identified more than 50 interacting RBPs, many functionally related and evoking a coordinated response. Knock-downs of several of the identified RBPs in HEK293 cells confirmed their involvement in CP-induced p27 mRNA regulation; while knock-down of the KH-type splicing regulatory protein (KHSRP) further enhanced the sensitivity of MCF7 adenocarcinoma cancer cells to CP treatment. Our results highlight the benefit of specific in vivo mRNA-protein interactome capture to reveal post-transcriptional regulatory networks implicated in cellular drug response and adaptation.


Assuntos
Regiões 3' não Traduzidas , Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Sequências de Repetição em Tandem , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Processamento Pós-Transcricional do RNA , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética
6.
BMC Genomics ; 20(1): 100, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704403

RESUMO

BACKGROUND: Along with the reorganization of epigenetic and transcriptional networks, somatic cell reprogramming brings about numerous changes at the level of RNA processing. These include the expression of specific transcript isoforms and 3' untranslated regions. A number of studies have uncovered RNA processing factors that modulate the efficiency of the reprogramming process. However, a comprehensive evaluation of the involvement of RNA processing factors in the reprogramming of somatic mammalian cells is lacking. RESULTS: Here, we used data from a large number of studies carried out in three mammalian species, mouse, chimpanzee and human, to uncover consistent changes in gene expression upon reprogramming of somatic cells. We found that a core set of nine splicing factors have consistent changes across the majority of data sets in all three species. Most striking among these are ESRP1 and ESRP2, which accelerate and enhance the efficiency of somatic cell reprogramming by promoting isoform expression changes associated with mesenchymal-to-epithelial transition. We further identify genes and processes in which splicing changes are observed in both human and mouse. CONCLUSIONS: Our results provide a general resource for gene expression and splicing changes that take place during somatic cell reprogramming. Furthermore, they support the concept that splicing factors with evolutionarily conserved, cell type-specific expression can modulate the efficiency of the process by reinforcing intermediate states resembling the cell types in which these factors are normally expressed.


Assuntos
Reprogramação Celular , Processamento Pós-Transcricional do RNA , Splicing de RNA , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Pan troglodytes , Isoformas de Proteínas , Proteínas de Ligação a RNA/genética
7.
Langmuir ; 35(8): 3038-3047, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30646687

RESUMO

Laser ablation of gold in liquids with nanosecond laser pulses in aqueous solutions of inorganic electrolytes and macromolecular ligands for gold nanoparticle size quenching is probed inside the laser-induced cavitation bubble by in situ X-ray multicontrast imaging with a Hartmann mask (XHI). It is found that (i) the in situ size quenching power of sodium chloride (NaCl) in comparison to the ablation in pure water can be observed by the scattering contrast from XHI already inside the cavitation bubble, while (ii) for polyvinylpyrrolidone (PVP) as a macromolecular model ligand an in situ size quenching cannot be observed. Complementary ex situ characterization confirms the overall size quenching ability of both additive types NaCl and PVP. The macromolecular ligand as well as its monomer N-vinylpyrrolidone (NVP) are mainly effective for growth quenching of larger nanoparticles on later time scales, leading to the conclusion of an alternative interaction mechanism with ablated nanoparticles compared to the electrolyte NaCl, probably outside of the cavitation bubble, in the surrounding liquid phase. While monomer and polymer have similar effects on the particle properties, with the polymer being slightly more efficient, only the polymer is effective against hydrodynamic aggregation.

8.
Chemphyschem ; 18(9): 1155-1164, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188671

RESUMO

Magnetic nanoparticles were generated by ultrashort pulsed laser ablation of an iron target in water, methanol, ethanol, acetone and toluene. The relationship between ablation rate, liquid properties and the physical and chemical properties of the nanoparticles was studied. Composition, morphology and magnetic properties were investigated by TEM, XPS and vibrating-sample (VSM) and SQUID magnetometry. The properties of the generated nanoparticle ensembles reflected the influence of the liquid environment on the particle formation process. For example, the composition was strongly dependent on the carbon to oxygen ratio within the molecules of the liquid. In contrast to short pulsed laser ablation in liquids, the nanoparticles generated by ultrashort pulses had a higher level of polycrystallinity.

9.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425672

RESUMO

The tremendous rate with which data is generated and analysis methods emerge makes it increasingly difficult to keep track of their domain of applicability, assumptions, and limitations and consequently, of the efficacy and precision with which they solve specific tasks. Therefore, there is an increasing need for benchmarks, and for the provision of infrastructure for continuous method evaluation. APAeval is an international community effort, organized by the RNA Society in 2021, to benchmark tools for the identification and quantification of the usage of alternative polyadenylation (APA) sites from short-read, bulk RNA-sequencing (RNA-seq) data. Here, we reviewed 17 tools and benchmarked eight on their ability to perform APA identification and quantification, using a comprehensive set of RNA-seq experiments comprising real, synthetic, and matched 3'-end sequencing data. To support continuous benchmarking, we have incorporated the results into the OpenEBench online platform, which allows for seamless extension of the set of methods, metrics, and challenges. We envisage that our analyses will assist researchers in selecting the appropriate tools for their studies. Furthermore, the containers and reproducible workflows generated in the course of this project can be seamlessly deployed and extended in the future to evaluate new methods or datasets.

10.
Sci Rep ; 12(1): 2991, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194110

RESUMO

We performed untargeted profiling of circulating microRNAs (miRNAs) in a well characterized cohort of older adults to verify associations of health and disease-related biomarkers with systemic miRNA expression. Differential expression analysis revealed 30 miRNAs that significantly differed between healthy active, healthy sedentary and sedentary cardiovascular risk patients. Increased expression of miRNAs miR-193b-5p, miR-122-5p, miR-885-3p, miR-193a-5p, miR-34a-5p, miR-505-3p, miR-194-5p, miR-27b-3p, miR-885-5p, miR-23b-5b, miR-365a-3p, miR-365b-3p, miR-22-5p was associated with a higher metabolic risk profile, unfavourable macro- and microvascular health, lower physical activity (PA) as well as cardiorespiratory fitness (CRF) levels. Increased expression of miR-342-3p, miR-1-3p, miR-92b-5p, miR-454-3p, miR-190a-5p and miR-375-3p was associated with a lower metabolic risk profile, favourable macro- and microvascular health as well as higher PA and CRF. Of note, the first two principal components explained as much as 20% and 11% of the data variance. miRNAs and their potential target genes appear to mediate disease- and health-related physiological and pathophysiological adaptations that need to be validated and supported by further downstream analysis in future studies.Clinical Trial Registration: ClinicalTrials.gov: NCT02796976 ( https://clinicaltrials.gov/ct2/show/NCT02796976 ).


Assuntos
MicroRNA Circulante/genética , Doença/genética , Perfilação da Expressão Gênica/métodos , Voluntários Saudáveis , Adaptação Fisiológica/genética , Fatores Etários , Aptidão Cardiorrespiratória , MicroRNA Circulante/metabolismo , MicroRNA Circulante/fisiologia , Estudos de Coortes , Exercício Físico/genética , Feminino , Expressão Gênica/genética , Fatores de Risco de Doenças Cardíacas , Humanos , Masculino , Comportamento Sedentário
11.
F1000Res ; 10: 33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34035898

RESUMO

Data analysis often entails a multitude of heterogeneous steps, from the application of various command line tools to the usage of scripting languages like R or Python for the generation of plots and tables. It is widely recognized that data analyses should ideally be conducted in a reproducible way. Reproducibility enables technical validation and regeneration of results on the original or even new data. However, reproducibility alone is by no means sufficient to deliver an analysis that is of lasting impact (i.e., sustainable) for the field, or even just one research group. We postulate that it is equally important to ensure adaptability and transparency. The former describes the ability to modify the analysis to answer extended or slightly different research questions. The latter describes the ability to understand the analysis in order to judge whether it is not only technically, but methodologically valid. Here, we analyze the properties needed for a data analysis to become reproducible, adaptable, and transparent. We show how the popular workflow management system Snakemake can be used to guarantee this, and how it enables an ergonomic, combined, unified representation of all steps involved in data analysis, ranging from raw data processing, to quality control and fine-grained, interactive exploration and plotting of final results.


Assuntos
Análise de Dados , Software , Reprodutibilidade dos Testes , Fluxo de Trabalho
12.
Cell Death Differ ; 26(10): 2157-2178, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30728462

RESUMO

Post-transcriptional control of mRNAs by RNA-binding proteins (RBPs) has a prominent role in the regulation of gene expression. RBPs interact with mRNAs to control their biogenesis, splicing, transport, localization, translation, and stability. Defects in such regulation can lead to a wide range of human diseases from neurological disorders to cancer. Many RBPs are conserved between Caenorhabditis elegans and humans, and several are known to regulate apoptosis in the adult C. elegans germ line. How these RBPs control apoptosis is, however, largely unknown. Here, we identify mina-1(C41G7.3) in a RNA interference-based screen as a novel regulator of apoptosis, which is exclusively expressed in the adult germ line. The absence of MINA-1 causes a dramatic increase in germ cell apoptosis, a reduction in brood size, and an impaired P granules organization and structure. In vivo crosslinking immunoprecipitation experiments revealed that MINA-1 binds a set of mRNAs coding for RBPs associated with germ cell development. Additionally, a system-wide analysis of a mina-1 deletion mutant compared with wild type, including quantitative proteome and transcriptome data, hints to a post-transcriptional regulatory RBP network driven by MINA-1 during germ cell development in C. elegans. In particular, we found that the germline-specific Argonaute WAGO-4 protein levels are increased in mina-1 mutant background. Phenotypic analysis of double mutant mina-1;wago-4 revealed that contemporary loss of MINA-1 and WAGO-4 strongly rescues the phenotypes observed in mina-1 mutant background. To strengthen this functional interaction, we found that upregulation of WAGO-4 in mina-1 mutant animals causes hypersensitivity to exogenous RNAi. Our comprehensive experimental approach allowed us to describe a phenocritical interaction between two RBPs controlling germ cell apoptosis and exogenous RNAi. These findings broaden our understanding of how RBPs can orchestrate different cellular events such as differentiation and death in C. elegans.


Assuntos
Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Interferência de RNA , Animais , Células Germinativas
13.
Curr Opin Cell Biol ; 52: 8-13, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29275148

RESUMO

Understanding how cell identity is established and maintained is one of the most exciting challenges of molecular biology today. Recent work has added a conserved layer of RNA splicing and other post-transcriptional regulatory processes to the transcriptional and epigenetic networks already known to cooperate in the establishment and maintenance of cell identity. Here we summarize these findings, highlighting specifically the multitude of splicing factors that can modulate the efficiency of somatic cell reprogramming. Distinct patterns of gene expression dynamics of these factors during reprogramming suggest that further improvements in efficiency could be obtained through optimal timing of overexpression or knockdown of individual regulators.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica/genética , Splicing de RNA/genética , Humanos
14.
Hum Gene Ther ; 18(7): 673-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17630838

RESUMO

One of the problems that limit the efficiency of viral gene therapy is the lack of specificity of viral particle binding. The development of techniques to target viral particles to specific cell types is therefore important. Because GP64 can efficiently pseudotype lentiviral vectors, we investigated the possibility of using GP64 for lentiviral vector particle targeting. A peptide derived from the hepatitis B virus (HBV) PreS1 protein, with known affinity for an unidentified receptor expressed on hepatocytes, was inserted at amino acid position 278 of the GP64 protein (PreS1-GP64). The GP64 and PreS1-GP64 proteins were expressed and incorporated into lentiviral particles at comparable levels. Flow cytometry measurements confirmed surface display of the PreS1 peptide. The highest titers of PreS1-GP64-pseudotyped lentiviral vectors were observed on liver-derived cell lines. Gene transfer of PreS1-GP64 lentiviral vectors was inhibited by coincubation with an antibody directed against the PreS1 peptide. These data suggest that the PreS1 peptide is involved in viral attachment to the cell surface. The insertion of targeting peptides into the GP64 envelope protein represents a potential approach for the targeting of lentiviral vectors to specific cell types.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos/genética , Vírus da Hepatite B/genética , Hepatócitos/metabolismo , Lentivirus/genética , Peptídeos/genética , Proteínas da Matriz Viral/genética , Proteínas Estruturais Virais/genética , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Vetores Genéticos/metabolismo , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Peptídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vírion/genética , Vírion/metabolismo
15.
Genome Biol ; 16: 150, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26201343

RESUMO

BACKGROUND: Understanding the regulation of gene expression, including transcription start site usage, alternative splicing, and polyadenylation, requires accurate quantification of expression levels down to the level of individual transcript isoforms. To comparatively evaluate the accuracy of the many methods that have been proposed for estimating transcript isoform abundance from RNA sequencing data, we have used both synthetic data as well as an independent experimental method for quantifying the abundance of transcript ends at the genome-wide level. RESULTS: We found that many tools have good accuracy and yield better estimates of gene-level expression compared to commonly used count-based approaches, but they vary widely in memory and runtime requirements. Nucleotide composition and intron/exon structure have comparatively little influence on the accuracy of expression estimates, which correlates most strongly with transcript/gene expression levels. To facilitate the reproduction and further extension of our study, we provide datasets, source code, and an online analysis tool on a companion website, where developers can upload expression estimates obtained with their own tool to compare them to those inferred by the methods assessed here. CONCLUSIONS: As many methods for quantifying isoform abundance with comparable accuracy are available, a user's choice will likely be determined by factors such as the memory and runtime requirements, as well as the availability of methods for downstream analyses. Sequencing-based methods to quantify the abundance of specific transcript regions could complement validation schemes based on synthetic data and quantitative PCR in future or ongoing assessments of RNA-seq analysis methods.


Assuntos
Perfilação da Expressão Gênica/métodos , Isoformas de RNA/análise , Análise de Sequência de RNA/métodos , Software , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células Jurkat , Camundongos , Células NIH 3T3
16.
Biomol Concepts ; 3(5): 403-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25436546

RESUMO

Abstract The development of genome-wide analysis tools has prompted global investigation of the gene expression program, revealing highly coordinated control mechanisms that ensure proper spatiotemporal activity of a cell's macromolecular components. With respect to the regulation of RNA transcripts, the concept of RNA regulons, which - by analogy with DNA regulons in bacteria - refers to the coordinated control of functionally related RNA molecules, has emerged as a unifying theory that describes the logic of regulatory RNA-protein interactions in eukaryotes. Hundreds of RNA-binding proteins and small non-coding RNAs, such as microRNAs, bind to distinct elements in target RNAs, thereby exerting specific and concerted control over posttranscriptional events. In this review, we discuss recent reports committed to systematically explore the RNA-protein interaction network and outline some of the principles and recurring features of RNA regulons: the coordination of functionally related mRNAs through RNA-binding proteins or non-coding RNAs, the modular structure of its components, and the dynamic rewiring of RNA-protein interactions upon exposure to internal or external stimuli. We also summarize evidence for robust combinatorial control of mRNAs, which could determine the ultimate fate of each mRNA molecule in a cell. Finally, the compilation and integration of global protein-RNA interaction data has yielded first insights into network structures and provided the hypothesis that RNA regulons may, in part, constitute noise 'buffers' to handle stochasticity in cellular transcription.

17.
PLoS One ; 7(11): e49568, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166713

RESUMO

Vascular endothelial growth factor A (VEGFA) plays a key role in the angiogenesis of human skin. Elevated levels of VEGFA are associated with several pathological conditions, including chronic inflammatory skin diseases and several types of skin cancer. In particular, squamous cell carcinoma (SCC) of the skin, the second most common skin cancer in the general population, is characterized by invasive growth, pronounced angiogenesis and elevated levels of VEGFA. The processing, turnover and production of VEGFA are extensively regulated at the post-transcriptional level, both by RNA-binding proteins and microRNAs (miRNAs). In the present study, we identified a new miRNA recognition element in a downstream conserved region of the VEGFA 3'-UTR. We confirmed the repressive effect of miR-361-5p on this element in vitro, identifying the first target for this miRNA. Importantly, we found that miR-361-5p levels are inversely correlated with VEGFA expression in SCC and in healthy skin, indicating that miR-361-5p could play a role in cancers.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Cutâneas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Regiões 3' não Traduzidas , Sequência de Bases , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular , Ordem dos Genes , Humanos , MicroRNAs/metabolismo , Mutação , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-20836026

RESUMO

Some of the classical paradigms of gene regulation have been challenged by global-scale analysis of eukaryotic transcriptional and post-transcriptional gene regulation (PTGR), made possible by the development of genomics and proteomics tools. Post-transcriptional events in particular are increasingly being recognized as important sources of gene regulation. The hundreds of regulatory RNA-binding proteins that exist in eukaryotes may regulate dozens to hundreds of functionally related RNA targets. Likewise, the expression of considerable fractions of many eukaryotic genomes is affected by hundreds of non-coding RNAs, e.g., microRNAs. These findings suggest an enormous regulatory potential for PTGR that may affect virtually every message in a cell. All gene regulatory systems are composed of simple network circuits that coordinate the transfer of regulatory signals to a target gene/message.


Assuntos
Redes Reguladoras de Genes , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Genes Reguladores , Genômica/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
19.
PLoS One ; 3(9): e3164, 2008 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-18776931

RESUMO

Genome-wide identification of mRNAs regulated by RNA-binding proteins is crucial to uncover post-transcriptional gene regulatory systems. The conserved PUF family RNA-binding proteins repress gene expression post-transcriptionally by binding to sequence elements in 3'-UTRs of mRNAs. Despite their well-studied implications for development and neurogenesis in metazoa, the mammalian PUF family members are only poorly characterized and mRNA targets are largely unknown. We have systematically identified the mRNAs associated with the two human PUF proteins, PUM1 and PUM2, by the recovery of endogenously formed ribonucleoprotein complexes and the analysis of associated RNAs with DNA microarrays. A largely overlapping set comprised of hundreds of mRNAs were reproducibly associated with the paralogous PUM proteins, many of them encoding functionally related proteins. A characteristic PUF-binding motif was highly enriched among PUM bound messages and validated with RNA pull-down experiments. Moreover, PUF motifs as well as surrounding sequences exhibit higher conservation in PUM bound messages as opposed to transcripts that were not found to be associated, suggesting that PUM function may be modulated by other factors that bind conserved elements. Strikingly, we found that PUF motifs are enriched around predicted miRNA binding sites and that high-confidence miRNA binding sites are significantly enriched in the 3'-UTRs of experimentally determined PUM1 and PUM2 targets, strongly suggesting an interaction of human PUM proteins with the miRNA regulatory system. Our work suggests extensive connections between the RBP and miRNA post-transcriptional regulatory systems and provides a framework for deciphering the molecular mechanism by which PUF proteins regulate their target mRNAs.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Motivos de Aminoácidos , Animais , Sítios de Ligação , Primers do DNA/química , Drosophila melanogaster/metabolismo , Células HeLa , Humanos , Família Multigênica , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo
20.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 6): 644-50, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18560152

RESUMO

Similar to many other bacterial cell-wall-hydrolyzing enzymes, the Listeria bacteriophage A500 endopeptidase Ply500 has a modular architecture consisting of an enzymatically active domain (EAD) linked to a cell-wall-binding domain (CBD) in a single polypeptide chain. The crystal structure of the EAD of Ply500 has been solved at 1.8 A resolution. The shape of the enzyme resembles a sofa chair: one alpha-helix and three antiparallel beta-strands form the seat, which is supported by two more alpha-helices, while another alpha-helix together with the following loop give rise to the backrest. A sulfate anion bound to the active site, which harbours a catalytic Zn2+ ion, indicates mechanistic details of the peptidase reaction, which involves a tetrahedral transition state. Despite very low sequence similarity, a clear structural relationship was detected to the peptidases VanX, DDC, MSH and MepA, which belong to the so-called 'LAS' family. Their gross functional similarity is supported by a common bound Zn2+ ion and a highly conserved set of coordinating residues (His80, Asp87 and His133) as well as other side chains (Arg50, Gln55, Ser78 and Asp130) in the active site. Considering the high sequence similarity to the EAD of the Listeria phage endopeptidase Ply118, both enzymes can thus be assigned to the LAS family. The same is the case for the L,D-endopeptidase CwlK from Bacillus subtilis, which shows both functional and amino-acid sequence similarity. The fact that the CBD of Ply500 is closely homologous to the CBD of the Listeria phage N-acetylmuramoyl-L-alanine amidase PlyPSA, which exhibits a totally different EAD, illustrates the modular composition and functional variability of this class of enzymes and opens interesting possibilities for protein engineering.


Assuntos
Bacteriófagos/enzimologia , Endopeptidases/química , Listeria monocytogenes/virologia , Sequência de Aminoácidos , Bacteriófagos/genética , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , Primers do DNA/genética , DNA Viral/genética , Endopeptidases/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA