Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 168(5): 910-954, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38183680

RESUMO

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Assuntos
Encéfalo , Metabolismo Energético , Animais , Humanos , Encéfalo/metabolismo
2.
Sci Rep ; 14(1): 14405, 2024 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909138

RESUMO

Microglia, brain-resident macrophages, can acquire distinct functional phenotypes, which are supported by differential reprogramming of cell metabolism. These adaptations include remodeling in glycolytic and mitochondrial metabolic fluxes, potentially altering energy substrate availability at the tissue level. This phenomenon may be highly relevant in the brain, where metabolism must be precisely regulated to maintain appropriate neuronal excitability and synaptic transmission. Direct evidence that microglia can impact on neuronal energy metabolism has been widely lacking, however. Combining molecular profiling, electrophysiology, oxygen microsensor recordings and mathematical modeling, we investigated microglia-mediated disturbances in brain energetics during neuroinflammation. Our results suggest that proinflammatory microglia showing enhanced nitric oxide release and decreased CX3CR1 expression transiently increase the tissue lactate/glucose ratio that depends on transcriptional reprogramming in microglia, not in neurons. In this condition, neuronal network activity such as gamma oscillations (30-70 Hz) can be fueled by increased ATP production in mitochondria, which is reflected by elevated oxygen consumption. During dysregulated inflammation, high energy demand and low glucose availability can be boundary conditions for neuronal metabolic fitness as revealed by kinetic modeling of single neuron energetics. Collectively, these findings indicate that metabolic flexibility protects neuronal network function against alterations in local substrate availability during moderate neuroinflammation.


Assuntos
Metabolismo Energético , Glucose , Microglia , Doenças Neuroinflamatórias , Neurônios , Animais , Neurônios/metabolismo , Microglia/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Ácido Láctico/metabolismo , Rede Nervosa/metabolismo , Encéfalo/metabolismo , Consumo de Oxigênio , Trifosfato de Adenosina/metabolismo , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA