Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 65, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678291

RESUMO

BACKGROUND: Sensory reafferents are crucial to correct our posture and movements, both reflexively and in a cognitively driven manner. They are also integral to developing and maintaining a sense of agency for our actions. In cases of compromised reafferents, such as for persons with amputated or congenitally missing limbs, or diseases of the peripheral and central nervous systems, augmented sensory feedback therefore has the potential for a strong, neurorehabilitative impact. We here developed an untethered vibrotactile garment that provides walking-related sensory feedback remapped non-invasively to the wearer's back. Using the so-called FeetBack system, we investigated if healthy individuals perceive synchronous remapped feedback as corresponding to their own movement (motor awareness) and how temporal delays in tactile locomotor feedback affect both motor awareness and walking characteristics (adaptation). METHODS: We designed the system to remap somatosensory information from the foot-soles of healthy participants (N = 29), using vibrotactile apparent movement, to two linear arrays of vibrators mounted ipsilaterally on the back. This mimics the translation of the centre-of-mass over each foot during stance-phase. The intervention included trials with real-time or delayed feedback, resulting in a total of 120 trials and approximately 750 step-cycles, i.e. 1500 steps, per participant. Based on previous work, experimental delays ranged from 0ms to 1500ms to include up to a full step-cycle (baseline stride-time: µ = 1144 ± 9ms, range 986-1379ms). After each trial participants were asked to report their motor awareness. RESULTS: Participants reported high correspondence between their movement and the remapped feedback for real-time trials (85 ± 3%, µ ± σ), and lowest correspondence for trials with left-right reversed feedback (22 ± 6% at 600ms delay). Participants further reported high correspondence of trials delayed by a full gait-cycle (78 ± 4% at 1200ms delay), such that the modulation of motor awareness is best expressed as a sinusoidal relationship reflecting the phase-shifts between actual and remapped tactile feedback (cos model: 38% reduction of residual sum of squares (RSS) compared to linear fit, p < 0.001). The temporal delay systematically but only moderately modulated participant stride-time in a sinusoidal fashion (3% reduction of RSS compared a linear fit, p < 0.01). CONCLUSIONS: We here demonstrate that lateralized, remapped haptic feedback modulates motor awareness in a systematic, gait-cycle dependent manner. Based on this approach, the FeetBack system was used to provide augmented sensory information pertinent to the user's on-going movement such that they reported high motor awareness for (re)synchronized feedback of their movements. While motor adaptation was limited in the current cohort of healthy participants, the next step will be to evaluate if individuals with a compromised peripheral nervous system, as well as those with conditions of the central nervous system such as Parkinson's Disease, may benefit from the FeetBack system, both for maintaining a sense of agency over their movements as well as for systematic gait-adaptation in response to the remapped, self-paced, rhythmic feedback.


Assuntos
Retroalimentação Sensorial , , Percepção do Tato , Humanos , Masculino , Feminino , Adulto , Retroalimentação Sensorial/fisiologia , Pé/fisiologia , Percepção do Tato/fisiologia , Adulto Jovem , Caminhada/fisiologia , Vibração , Tato/fisiologia
2.
Exp Brain Res ; 239(11): 3175-3188, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34424361

RESUMO

There is a steadily growing number of mobile communication systems that provide spatially encoded tactile information to the humans' torso. However, the increased use of such hands-off displays is currently not matched with or supported by systematic perceptual characterization of tactile spatial discrimination on the torso. Furthermore, there are currently no data testing spatial discrimination for dynamic force stimuli applied to the torso. In the present study, we measured tactile point localization (LOC) and tactile direction discrimination (DIR) on the thoracic spine using two unisex torso-worn tactile vests realized with arrays of 3 × 3 vibrotactile or force feedback actuators. We aimed to, first, evaluate and compare the spatial discrimination of vibrotactile and force stimulations on the thoracic spine and, second, to investigate the relationship between the LOC and DIR results across stimulations. Thirty-four healthy participants performed both tasks with both vests. Tactile accuracies for vibrotactile and force stimulations were 60.7% and 54.6% for the LOC task; 71.0% and 67.7% for the DIR task, respectively. Performance correlated positively with both stimulations, although accuracies were higher for the vibrotactile than for the force stimulation across tasks, arguably due to specific properties of vibrotactile stimulations. We observed comparable directional anisotropies in the LOC results for both stimulations; however, anisotropies in the DIR task were only observed with vibrotactile stimulations. We discuss our findings with respect to tactile perception research as well as their implications for the design of high-resolution torso-mounted tactile displays for spatial cueing.


Assuntos
Percepção do Tato , Vibração , Humanos , Coluna Vertebral , Tronco , Tato
3.
R Soc Open Sci ; 10(2): 221561, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816848

RESUMO

One's own voice is one of the most important and most frequently heard voices. Although it is the sound we associate most with ourselves, it is perceived as strange when played back in a recording. One of the main reasons is the lack of bone conduction that is inevitably present when hearing one's own voice while speaking. The resulting discrepancy between experimental and natural self-voice stimuli has significantly impeded self-voice research, rendering it one of the least investigated aspects of self-consciousness. Accordingly, factors that contribute to self-voice perception remain largely unknown. In a series of three studies, we rectified this ecological discrepancy by augmenting experimental self-voice stimuli with bone-conducted vibrotactile stimulation that is present during natural self-voice perception. Combining voice morphing with psychophysics, we demonstrate that specifically self-other but not familiar-other voice discrimination improved for stimuli presented using bone as compared with air conduction. Furthermore, our data outline independent contributions of familiarity and acoustic processing to separating the own from another's voice: although vocal differences increased general voice discrimination, self-voices were more confused with familiar than unfamiliar voices, regardless of their acoustic similarity. Collectively, our findings show that concomitant vibrotactile stimulation improves auditory self-identification, thereby portraying self-voice as a fundamentally multi-modal construct.

4.
ERJ Open Res ; 9(6)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020572

RESUMO

Background: Immersive virtual reality (iVR)-based digital therapeutics are gaining clinical attention in the field of pain management. Based on known analogies between pain and dyspnoea, we investigated the effects of visual respiratory feedback on persistent dyspnoea in patients recovering from coronavirus disease 2019 (COVID-19) pneumonia. Methods: We performed a controlled, randomised, single-blind, crossover proof-of-concept study (feasibility and initial clinical efficacy) to evaluate an iVR-based intervention to alleviate dyspnoea in patients recovering from COVID-19 pneumonia. Included patients reported persistent dyspnoea (≥5 on a 10-point scale) and preserved cognitive function (Montreal Cognitive Assessment score >24). Assignment was random and concealed. Patients received synchronous (intervention) or asynchronous (control) feedback of their breathing, embodied via a gender-matched virtual body. The virtual body flashed in a waxing and waning visual effect that could be synchronous or asynchronous to the patient's respiratory movements. Outcomes were assessed using questionnaires and breathing recordings. Results: Study enrolment was open between November 2020 and April 2021. 26 patients were enrolled (27% women; median age 55 years, interquartile range (IQR) 18 years). Data were available for 24 of 26 patients. The median rating on a 7-point Likert scale of breathing comfort improved from 1 (IQR 2) at baseline to 2 (IQR 1) for synchronous feedback, but remained unchanged at 1 (IQR 1.5) for asynchronous feedback (p<0.05 between iVR conditions). Moreover, 91.2% of all patients were satisfied with the intervention (p<0.0001) and 66.7% perceived it as beneficial for their breathing (p<0.05). Conclusion: Our iVR-based digital therapy presents a feasible and safe respiratory rehabilitation tool that improves breathing comfort in patients recovering from COVID-19 infection presenting with persistent dyspnoea. Future research should investigate the intervention's generalisability to persistent dyspnoea with other aetiologies and its potential for preventing chronification.

5.
Schizophr Bull ; 48(2): 495-504, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935960

RESUMO

Schizophrenia is a chronic and disabling mental illness characterized by a disordered sense of self. Current theories suggest that deficiencies in the sense of control over one's actions (Sense of Agency, SoA) may underlie some of the symptoms of schizophrenia. However, it is not clear if agency deficits are a precursor or a result of psychosis. Here, we investigated full body agency using virtual reality in a cohort of 22q11 deletion syndrome participants with a genetic propensity for schizophrenia. In two experiments employing virtual reality, full body motion tracking, and online feedback, we investigated SoA in two separate domains. Our results show that participants with 22q11DS had a considerable deficit in monitoring their actions, compared to age-matched controls in both the temporal and spatial domain. This was coupled with a bias toward erroneous attribution of actions to the self. These results indicate that nonpsychotic 22q11DS participants have a domain general deficit in the conscious sensorimotor mechanisms underlying the bodily self. Our data reveal an abnormality in the SoA in a cohort with a genetic predisposition for schizophrenia, but without psychosis, providing evidence that deficits in delineation of the self may be a precursor rather than a result of the psychotic state.


Assuntos
Esquizofrenia/complicações , Esquizofrenia/genética , Síndrome da Deleção 22q11/complicações , Síndrome da Deleção 22q11/genética , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Modelos Genéticos
6.
Schizophr Res ; 231: 170-177, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33866262

RESUMO

Sensorimotor conflicts are known to alter the perception of accompanying sensory signals, and deficits in sensory attenuation have been observed in schizophrenia. In the auditory domain, self-generated tones or voices (compared to tones or voices presented passively or with temporal delays) have been associated with changes in loudness perception and attenuated neural responses. It has been argued that for sensory signals to be attenuated, predicted and sensory consequences must have a consistent spatiotemporal relationship, between button presses and reafferent signals, via predictive sensory signaling, a process altered in schizophrenia. Here, we investigated auditory sensory attenuation for a series of morphed voices while healthy participants applied sensorimotor stimulations that had no spatiotemporal relationship to the voice stimuli and that have been shown to induce mild psychosis-like phenomena. In two independent groups of participants, we report a loudening of silent voices and found this effect only during maximal sensorimotor conflicts (versus several control conditions). Importantly, conflicting sensorimotor stimulation also induced a mild psychosis-like state in the form of somatic passivity and participants who experienced stronger passivity lacked the sensorimotor loudening effect. We argue that this conflict-related sensorimotor loudness amplification may represent a reduction of auditory self-attenuation that is lacking in participants experiencing a concomitant mild psychosis-like state. We interpret our results within the framework of the comparator model of sensorimotor control, and discuss the implications of our findings regarding passivity experiences and hallucinations in schizophrenia.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Voz , Delusões , Alucinações , Humanos , Transtornos Psicóticos/complicações
7.
iScience ; 23(3): 100901, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32109678

RESUMO

Altered states of embodiment are fundamental to the scientific understanding of bodily self consciousness. The feeling of disembodiment during everyday activities is common to clinical conditions; however, the direct study of disembodiment in experimental setups is rare compared to the extensive investigation of illusory embodiment of an external object. Using mixed reality to modulate embodiment through temporally mismatching sensory signals from the own body, we assessed how such mismatches affect phenomenal and physiological aspects of embodiment and measured perceptual thresholds for these across multimodal signals. The results of a principal component analysis suggest that multimodal mismatches generally induce disembodiment by increasing the sense of disownership and deafference and decreasing embodiment; however, this was not generally reflected in physiological changes. Although visual delay decreased embodiment both during active movement and passive touch, the effect was stronger for the former. We discuss the relevance of these findings for understanding bodily self plasticity.

8.
Psychophysiology ; 57(8): e13564, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32162704

RESUMO

Previous studies investigated bodily self-consciousness (BSC) by experimentally exposing subjects to multisensory conflicts (i.e., visuo-tactile, audio-tactile, visuo-cardiac) in virtual reality (VR) that involve the participant's torso in a paradigm known as the full-body illusion (FBI). Using a modified FBI paradigm, we found that synchrony of visuo-respiratory stimulation (i.e., a flashing outline surrounding an avatar in VR; the flash intensity depending on breathing), is also able to modulate BSC by increasing self-location and breathing agency toward the virtual body. Our aim was to investigate such visuo-respiratory effects and determine whether respiratory motor commands contributes to BSC, using non-invasive mechanical ventilation (i.e., machine-delivered breathing). Seventeen healthy participants took part in a visuo-respiratory FBI paradigm and performed the FBI during two breathing conditions: (a) "active breathing" (i.e., participants actively initiate machine-delivered breaths) and (b) "passive breathing" (i.e., breaths' timing was determined by the machine). Respiration rate, tidal volume, and their variability were recorded. In line with previous results, participants experienced subjective changes in self-location, breathing agency, and self-identification toward the avatar's body, when presented with synchronous visuo-respiratory stimulation. Moreover, drift in self-location was reduced and tidal volume variability were increased by asynchronous visuo-respiratory stimulations. Such effects were not modulated by breathing control manipulations. Our results extend previous FBI findings showing that visuo-respiratory stimulation affects BSC, independently from breathing motor command initiation. Also, variability of respiratory parameters was influenced by visuo-respiratory feedback and might reduce breathing discomfort. Further exploration of such findings might inform the development of respiratory therapeutic tools using VR in patients.


Assuntos
Ilusões/fisiologia , Interocepção/fisiologia , Propriocepção/fisiologia , Respiração , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Estimulação Física , Respiração Artificial , Realidade Virtual , Adulto Jovem
9.
PLoS One ; 9(1): e85560, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465601

RESUMO

The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.


Assuntos
Retroalimentação Sensorial/fisiologia , Marcha/fisiologia , Desempenho Psicomotor/fisiologia , Caminhada/fisiologia , Adolescente , Adulto , Conscientização , Fenômenos Biomecânicos , Cognição , Feminino , Objetivos , Humanos , Masculino , Interface Usuário-Computador , Caminhada/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA