Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Langmuir ; 40(11): 5850-5857, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437621

RESUMO

The separation of propane and propylene is the most energy-consuming and difficult separation process in the petrochemical industry because of their extremely similar physical properties. Separating propylene from propane using sorption can considerably reduce the energy consumed by current cryogenic distillation techniques. However, sorption involves several major challenges. An elastic layer-structured metal-organic framework (ELM-11) exhibited a highly efficient propane/propylene sorption separation, owing to its kinetic properties. Under equilibrium conditions, propane and propylene exhibited similar sorption capacities, gate opening pressures, and heats of sorption. Thus, their separation under equilibrium conditions is impractical. However, the sorption rates of the two gases were considerably different, showing different diffusion coefficients, resulting in a high kinetic selectivity (214 at 298 K) of propylene over propane on ELM-11. This kinetic selectivity is considerably higher than those obtained in previous studies. Thus, ELM-11 is a promising sorbent for separation technologies.

2.
Langmuir ; 36(9): 2184-2190, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32053382

RESUMO

Mesoporous organic polymers, including poly(p-phenylene ether-sulfone) (PES), polysulfone (PSF), poly(bisphenol A-carbonate) (PC), and polyvinyl chloride (PVC), were prepared by the previously reported flash freezing method. For the four polymers, the vapor adsorption of water and hydrocarbons (C2H6, C3H8, and C6H14) was examined. PVC showed that the hydrocarbon adsorption was more selective than water adsorption. The isosteric heats of adsorption were determined from the temperature dependence of the vapor adsorption of the hydrocarbons and water. This showed the weak interaction of PVC with water and its stronger (but not too strong) interaction with hydrocarbons. The hydrophobicity and mesoporosity of PVC were determined to be suitable for such selective adsorption of hydrocarbons compared to that of water with low energy consumption during the desorption process of the hydrocarbons. Mesoporous PVC should considered a candidate for the recovery of flammable gases from water/hydrocarbon mixtures.

3.
Chem Rec ; 19(7): 1393-1406, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30548140

RESUMO

The enhancement of photocatalytic activity of TiO2 can be made either by promoting absorption efficiency of photon energy or by reducing recombination losses of photogenerated charge carriers, for which fabrication of nanocomposite structure with carbon materials is an optional selection. Among various nanocarbons, graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) are more favorable as the counterpart materials because they can provide availability of both obverse and reverse surface, thus doubling effective sites for adsorption, loading of nanoparticles, and interfacial interaction with the loaded nanoparticles. Composition of G/GO with titania, therefore, is a hopeful strategy for achieving synergy or cooperative effect in photocatalysis. In this personal account, we focus on the background and methodology of several soft chemical approaches that we have utilized up to date to fabricate nanocomposites of G/GO and titania, aiming to shed light on the importance of designing of nanocomposite structure for enhancing photocatalysis. In addition, we emphasize the role of interfacial interaction between carbon and titania by exemplifying a hybridized photocatalyst based on inexpensive biomass-derived carbon sphere (CS), and demonstrate that it is a crucial influential factor underlying an enhanced visible light photocatalysis. CS can be a better selection as a counterpart component than G/GO, whose core-shell composing structure with titania (TiO2 @CS) can efficiently induce charge transfer so as to achieve a much higher photocatalytic performance under visible light illumination as compared to the composite of rGO and titania.

4.
Langmuir ; 32(38): 9722-6, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27599535

RESUMO

A double-step CO2 sorption by [Cu(4,4'-bpy)2(BF4)2] (ELM-11) was observed during isothermal measurements at 195, 253, 273, and 298 K and was accompanied by interlayer expansion in the layered structure of ELM-11. The first step occurred in the range of the relative pressure (P/P0) from 10(-3) to 10(-2). The second step was observed at P/P0 ≈ 0.3 at the four temperatures. Structural changes in ELM-11 during the CO2 sorption process were examined by X-ray diffraction (XRD) measurements. The structural change for the first step was well understood from a detailed structural analysis, as reported previously. The XRD results showed further expansion of the layers during the second step as compared to the already expanded structure in the first step, and both steps were found to be caused by the gate phenomenon. The energy for the expansion of the layer structure was estimated from experimental and simulated data.

5.
Adv Sci (Weinh) ; 11(20): e2309226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477513

RESUMO

Here, an unprecedented phenomenon in which 7-coordinate lanthanide metallomesogens, which align via hydrogen bonds mediated by coordinated H2O molecules, form micellar cubic mesophases at room temperature, creating body-centered cubic (BCC)-type supramolecular spherical arrays, is reported. The results of experiments and molecular dynamics simulations reveal that spherical assemblies of three complexes surrounded by an amorphous alkyl domain spontaneously align in an energetically stable orientation to form the BCC structure. This phenomenon differs greatly from the conventional self-assembling behavior of 6-coordinated metallomesogens, which form columnar assemblies due to strong intermolecular interactions. Since the magnetic and luminescent properties of different lanthanides vary, adding arbitrary functions to spherical arrays is possible by selecting suitable lanthanides to be used. The method developed in this study using 7-coordinate lanthanide metallomesogens as building blocks is expected to lead to the rational development of micellar cubic mesophases.

6.
Langmuir ; 29(4): 1077-82, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23301929

RESUMO

Water plays an important role in controlling chemical reactions and bioactivities. For example, water transportation through water channels in a biomembrane is a key factor in bioactivities. However, molecular-level mechanisms of water transportation are as yet unknown. Here, we investigate water transportation through narrow and wide one-dimensional (1D) channels on the basis of water-vapor adsorption rates and those determined by molecular dynamics simulations. We observed that water in narrow 1D channels was transported 3-5 times faster than that in wide 1D channels, although the narrow 1D channels provide fewer free nanospaces for water transportation. This rapid transportation is attributed to the formation of fewer hydrogen bonds between water molecules adsorbed in narrow 1D channels. The water-transportation mechanism provides the possibility of rapid communication through 1D channels and will be useful in controlling reactions and activities in water systems.

7.
Phys Chem Chem Phys ; 15(15): 5658-63, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23474972

RESUMO

The hydration structure of NaCl aqueous solution was elucidated in carbon nanotubes (CNTs) on the basis of canonical ensemble Monte Carlo simulations. Hydration shells were preferentially formed even in narrow CNTs to gain stabilization energy, whereas hydrogen bonding between water molecules in such CNTs was sacrificed. Nanoscale-confined aqueous electrolyte solutions therefore prioritize hydration shell formation between ions and water rather than hydrogen-bond formation between water molecules.


Assuntos
Eletrólitos/química , Água/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Método de Monte Carlo , Nanotubos de Carbono/química , Cloreto de Sódio/química
8.
J Am Chem Soc ; 134(43): 17850-3, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23088448

RESUMO

Nanoscale confined electrolyte solutions are frequently observed, specifically in electrochemistry and biochemistry. However, the mechanism and structure of such electrolyte solutions are not well understood. We investigated the structure of aqueous electrolyte solutions in the internal nanospaces of single-walled carbon nanotubes, using synchrotron X-ray diffraction. The intermolecular distance between the water molecules in the electrolyte solution was increased because of anomalously strong hydration shell formation. Water correlation was further weakened at second-neighbor or longer distances. The anomalous hydrogen-bonding structure improves our understanding of electrolyte solutions in nanoenvironments.


Assuntos
Nanoestruturas/química , Eletrólitos/química , Ligação de Hidrogênio , Soluções , Água/química
9.
Langmuir ; 28(47): 16430-5, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23106296

RESUMO

The facile synthesis of an organic electric conducting nanowire is described. The simple oxidation of 9-methylcarbazole by iron(III) perchlorate in a methanol/acetonitrile mixture under atmospheric pressure and temperature produces abundant nanowires without using a template. The nanowire consists of 9,9'-dimethyl-3,3'-dicarbazyl and has a rectangular nanowire shape with an average diameter of 397 ± 50 nm and length of 17 ± 5 µm. The results of the elemental analysis, (1)H NMR, FT-IR, XPS, and ESR measurements revealed that the chemical composition of the nanowire is (dicarbazyl)(0.12)(dicarbazylium·ClO(4)(-))(0.88)·H(2)O. This result, combined with the UV-vis-NIR measurement, demonstrates that 9,9'-dimethyl-3,3'-dicarbazyl stacks in a mixed valence state. The nanowire is electroactive and has an electric conductivity of 3.0 × 10(-5) S cm(-1).

10.
Langmuir ; 28(19): 7564-71, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22509799

RESUMO

Transitional metals (M) were dispersed on single-wall carbon nanohorns (M/SWCNHs, M = Fe, Co, Ni, Cu) by simple thermal treatment of the deposited metal nitrate without H(2) reduction. Nanometallic Ni particles on SWCNH were evidenced by high-resolution transmission electron microscopic observation and X-ray photoelectron spectroscopy. The nano-Ni dispersed on SWCNH showed the highest CH(4) decomposition activity; the activity of used transitional metals decreases in the order Ni ≫ Co > Fe ≫ Cu. On the other hand, the reaction rate over Ni/SWCNH was much larger than that over Ni/Al(2)O(3), and the former provided CO(x)-free H(2) and cup-stacked carbon nanotubes, while Ni/Al(2)O(3) produced CO(x) in addition to H(2). SWCNH was superior to Al(2)O(3) as the catalyst support of Ni for the CH(4) decomposition reaction.

11.
J Am Chem Soc ; 133(38): 14880-3, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21870827

RESUMO

Graphene and graphitic nanoribbons possess different types of carbon hybridizations exhibiting different chemical activity. In particular, the basal plane of the honeycomb lattice of nanoribbons consisting of sp(2)-hybridized carbon atoms is chemically inert. Interestingly, their bare edges could be more reactive as a result of the presence of extra unpaired electrons, and for multilayer graphene nanoribbons, the presence of terraces and ripples could introduce additional chemical activity. In this study, a remarkable irreversibility in adsorption of CO(2) and H(2)O on graphitic nanoribbons was observed at ambient temperature, which is distinctly different from the behavior of nanoporous carbon and carbon blacks. We also noted that N(2) molecules strongly interact with the basal planes at 77 K in comparison with edges. The irreversible adsorptions of both CO(2) and H(2)O are due to the large number of sp(3)-hybridized carbon atoms located at the edges. The observed irreversible adsorptivity of the edge surfaces of graphitic nanoribbons for CO(2) and H(2)O indicates a high potential in the fabrication of novel types of catalysts and highly selective gas sensors.


Assuntos
Dióxido de Carbono/química , Grafite/química , Nanotubos de Carbono/química , Água/química , Adsorção , Propriedades de Superfície
12.
J Am Chem Soc ; 133(27): 10344-7, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21667920

RESUMO

An outstanding compression function for materials preparation exhibited by nanospaces of single-walled carbon nanohorns (SWCNHs) was studied using the B1-to-B2 solid phase transition of KI crystals at 1.9 GPa. High-resolution transmission electron microscopy and synchrotron X-ray diffraction examinations provided evidence that KI nanocrystals doped in the nanotube spaces of SWCNHs at pressures below 0.1 MPa had the super-high-pressure B2 phase structure, which is induced at pressures above 1.9 GPa in bulk KI crystals. This finding of the supercompression function of the carbon nanotubular spaces can lead to the development of a new compression-free route to precious materials whose syntheses require the application of high pressure.

13.
J Am Chem Soc ; 133(27): 10512-22, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21671624

RESUMO

Selective synthetic routes to coordination polymers [Cu(bpy)(2)(OTf)(2)](n) (bpy = 4,4'-bipyridine, OTf = trifluoromethanesulfonate) with 2- and 3-dimensionalities of the frameworks were established by properly choosing each different solvent-solution system. They show a quite similar local coordination environment around the Cu(II) centers, but these assemble in a different way leading to the 2D and 3D building-up structures. Although the two kinds of porous coordination polymers (PCPs) both have flexible frameworks, the 2D shows more marked flexibility than the 3D, giving rise to different flexibility-associated gas adsorption behaviors. All adsorption isotherms for N(2), CO(2), and Ar on the 3D PCP are of type I, whereas the 2D PCP has stepwise gas adsorption isotherms, also for CH(4) and water, in addition to these gases. The 3D structure, having hydrophilic and hydrophobic pores, shows the size-selective and quadrupole-surface electrical field interaction dependent adsorption. Remarkably, the 2D structure can accommodate greater amounts of gas molecules than that corresponding to the inherent crystallographic void volume through framework structural changes. In alcohol adsorption isotherms, however, the 2D PCP changes its framework structure through the guest accommodation, leading to no stepwise adsorption isotherms. The structural diversity of the 2D PCP stems from the breathing phenomenon and expansion/shrinkage modulation.

14.
J Am Chem Soc ; 133(7): 2022-4, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21280572

RESUMO

Vibrational-rotational properties of CH(4) adsorbed on the nanopores of single-wall carbon nanohorns (SWCNHs) at 105-140 K were investigated using IR spectroscopy. The difference vibrational-rotational bands of the ν(3) and ν(4) modes below 130 K show suppression of the P and R branches, while the Q branches remain. The widths of the Q branches are much narrower than in the bulk gas phase due to suppression of the Doppler effect. These results indicate that the rotation of CH(4) confined in the nanospaces of SWCNHs is highly restricted, resulting in a rigid assembly structure, which is an anomaly in contrast to that in the bulk liquid phase.

15.
Langmuir ; 27(11): 6905-9, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21534550

RESUMO

It is important to tune the sorption behavior of metal-organic framework (MOF) materials. Ethanol treatment on the hydrated form of [Cu(bpy)(2)(BF(4))(2)], which is a representative flexible MOF showing the fascinating gate phenomenon on CO(2) sorption, induces an easier dehydration and a significant decrease in the CO(2) gate pressure. The results of IR, X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS) measurements indicated that water molecules in the lattice of the hydrated form can be removed even at room temperature after the ethanol treatment and the basic 2D layered structure remains with a slight interlayer expansion. The results of thermogravimetric (TG) and gas chromatograph/mass spectrometry (GC/MS) analyses and of CO(2) sorptions indicated that the change of the gate phenomenon was caused by a trace of residual ethanol molecules included in the structure. Similar phenomena were observed on alcohols with different polarity and molecular size.

16.
J Am Chem Soc ; 132(19): 6764-7, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20411930

RESUMO

Surface-enhanced Raman scattering (SERS) was applied to detecting pentagon-heptagon pairs, the so-called Stone-Wales defect, in single-wall carbon nanotubes (SWCNTs). When a probing laser light was scanned over a SWCNT-dispersed silver surface, two distinct SERS spectra were obtained: (1) temporally stable spectra similar to that of resonance Raman spectra of bulk SWCNTs and (2) temporally fluctuating spectra with additional peaks which were not observed in the non-SERS spectra. The fluctuations in the SERS spectra are discussed in association with dynamic reconstruction of defective structures of SWCNTs (nonhexagonal arrangements of carbon atoms) in the vicinity of SERS-active sites under irradiation of the laser light.

17.
J Am Chem Soc ; 132(7): 2112-3, 2010 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-20121090

RESUMO

The effect of addition of tetraethylammonium tetrafluoroborate (Et(4)NBF(4)) on the structure of propylene carbonate (PC) confined in slit-shaped carbon nanopores of activated carbon fiber (pore width = 1.0 nm) was studied by synchrotron X-ray diffraction and reverse Monte Carlo simulation. PC molecules are randomly packed in the slit carbon nanopores of 1 nm in the absence of Et(4)NBF(4). Addition of Et(4)N(+) and BF(4)(-) ions promotes formation of considerably ordered double layers of PC molecules even in the highly restricted slit pore space. PC molecules can accept these ions efficiently. This structural modulation function of PC molecular assemblies should contribute to the evolution of supercapacitance in carbon nanopores.

18.
Inorg Chem ; 49(20): 9247-52, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20843060

RESUMO

A two-dimensional flexible porous coordination polymer (2D-PCP) that shows expansion/shrinkage structural transformation accompanied by molecular accommodation was synthesized by control of dimensionality in zero-dimensional and one-dimensional PCPs: The dynamic structural transformation cooperatively proceeds in the solid state with a drastic molecular rearrangement. Kinetics of the structural transformation was investigated.

19.
Nano Lett ; 9(11): 3694-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19842696

RESUMO

Single-wall carbon nanotube (SWCNT) bundles were pillared by fullerene (C60) by the cosonication of C60 and SWCNT in toluene to utilize the interstitial pores for hydrogen storage. C60-pillared SWCNTs were confirmed by the shift in the X-ray diffraction peak and the expanded hexagonal and distorted tetragonal bundles revealed by high-resolution transmission electron microscopy. The H2 adsorptivity of the C60-pillared SWCNT bundles was twice that of the original SWCNT bundles, indicating a design route for SWCNT hydrogen storage.

20.
Int J Mol Sci ; 11(10): 3803-45, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21152303

RESUMO

Coordination polymers (CPs) or metal-organic frameworks (MOFs) have attracted considerable attention because of the tunable diversity of structures and functions. A 4,4'-bipyridine molecule, which is a simple, linear, exobidentate, and rigid ligand molecule, can construct two-dimensional (2D) square grid type CPs. Only the 2D-CPs with appropriate metal cations and counter anions exhibit flexibility and adsorb gas with a gate mechanism and these 2D-CPs are called elastic layer-structured metal-organic frameworks (ELMs). Such a unique property can make it possible to overcome the dilemma of strong adsorption and easy desorption, which is one of the ideal properties for practical adsorbents.


Assuntos
Compostos Organometálicos/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA