Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 36(13): e9296, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35289456

RESUMO

RATIONALE: Information on the isotopic composition of nitrous oxide (N2 O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2 O isotope Reference Materials (RMs). METHODS: Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2 O isotope RMs have been developed and their 15 N/14 N, 18 O/16 O, 17 O/16 O ratios and 15 N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15 N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales. RESULTS: The established N2 O isotope RMs offer a wide spread in delta (δ) values: δ15 N: 0 to +104‰, δ18 O: +39 to +155‰, and δ15 NSP : -4 to +20‰. Conversion and uncertainty propagation of δ15 N and δ18 O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15 N(N2 O) and δ18 O(N2 O), with overall uncertainties of about 0.05‰ and 0.15‰, respectively. For δ15 NSP , an offset of >1.5‰ compared with earlier calibration approaches was detected, which should be revisited in the future. CONCLUSIONS: A set of seven N2 O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17 O data for N2 O RMs is expected to improve data quality/correction algorithms with respect to δ15 NSP and δ15 N analysis by mass spectrometry. We anticipate that the N2 O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.


Assuntos
Óxido Nitroso , Calibragem , Espectrometria de Massas/métodos , Óxido Nitroso/análise , Isótopos de Oxigênio/análise , Padrões de Referência
2.
Chimia (Aarau) ; 76(7-8): 656-660, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-38071632

RESUMO

Nitrous oxide (N2O) is an important trace gas contributing to global warming and depletion of ozone in the stratosphere. Its increasing abundance is caused mainly by anthropogenic sources, such as application of fertilizers in agriculture or emissions from industry. To understand the N2O global budget, its sources and sinks need to be well-described and quantified. In this project, a new method for N2O source appointment was developed that can help with this task. The method is based on analysis of the eight most abundant isotopic molecules of N2O, using quantum cascade laser absorption spectroscopy (QCLAS). The applicability of the method towards the N2O biogeochemical cycle was demonstrated on a prominent N2O source (bacterial denitrification) and the most important N2O sink (UV photolysis) on samples prepared in laboratory experiments. An extension of the QCLAS method to natural samples can be achieved by hyphenation with a preconcentration technique that increases concentration of the analyte and standardizes the sample matrix. This article provides an overview of currently applied preconcentration techniques in the field of greenhouse-gas analysis and a description of the preconcentration device TREX that will be employed in future projects with the developed QCLAS method.

3.
Rapid Commun Mass Spectrom ; 34(15): e8836, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32430945

RESUMO

RATIONALE: Unravelling the biogeochemical cycle of the potent greenhouse gas nitrous oxide (N2 O) is an underdetermined problem in environmental sciences due to the multiple source and sink processes involved, which complicate mitigation of its emissions. Measuring the doubly isotopically substituted molecules (isotopocules) of N2 O can add new opportunities to fingerprint and constrain its cycle. METHODS: We present a laser spectroscopic technique to selectively and simultaneously measure the eight most abundant isotopocules of N2 O, including three doubly substituted species - so called "clumped isotopes". For the absolute quantification of individual isotopocule abundances, we propose a new calibration scheme that combines thermal equilibration of a working standard gas with a direct mole fraction-based approach. RESULTS: The method is validated for a large range of isotopic composition values by comparison with other established methods (laser spectroscopy using conventional isotopic scale and isotope ratio mass spectrometry). Direct intercomparison with recently developed ultrahigh-resolution mass spectrometry shows clearly the advantages of the new laser technique, especially with respect to site specificity of isotopic substitution in the N2 O molecule. CONCLUSIONS: Our study represents a new methodological basis for the measurements of both singly substituted and clumped N2 O isotopes. It has a high potential to stimulate future research in the N2 O community by establishing a new class of reservoir-insensitive tracers and molecular-scale insights.

4.
Chimia (Aarau) ; 73(4): 232-238, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30975249

RESUMO

Nitrous oxide, N2O, is the environmentally most relevant constituent of the biogeochemical nitrogen cycle. Human activities, e.g. the agricultural use of mineral fertilizers, accelerate nitrogen transformations, leading to higher emissions of this strong greenhouse gas. Investigating the stable isotopic composition of N2O provides a better understanding of formation mechanisms to disentangle its variable source and sink processes. Mid-infrared (mid-IR) laser spectroscopy is a highly attractive technique to analyze N2O isotopocules based on their specific ro-vibrational absorption characteristics. Specifically, quantum cascade laser absorption spectroscopy (QCLAS) in combination with preconcentration has shown to be powerful for simultaneous and high-precision analysis of the main N2O isotopocules. Recently, in the scope of my PhD project, we have been advancing this analytical technique for the analysis of the very rare doubly substituted N2O isotopic species 15N14N18O, 14N15N18O, and 15N15N16O, also known as clumped isotopes. Currently, we are investigating the potential of these novel isotopic tracers to track the complex N2O production and consumption pathways. Improved understanding of the nitrogen cycle will be a major step towards N2O emission reduction.

5.
Nat Protoc ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654136

RESUMO

Stable isotopes of carbon, hydrogen, nitrogen, oxygen and sulfur are widespread in nature. Nevertheless, their relative abundance is not the same everywhere. This is due to kinetic isotope effects in enzymes and other physical principles such as equilibrium thermodynamics. Variations in isotope ratios offer unique insights into environmental pollution, trophic relationships in ecology, metabolic disorders and Earth history including climate history. Although classical isotope ratio mass spectrometry (IRMS) techniques still struggle to access intramolecular information like site-specific isotope abundance, electrospray ionization-Orbitrap mass spectrometry can be used to achieve precise and accurate intramolecular quantification of isotopically substituted molecules ('isotopocules'). This protocol describes two procedures. In the first one, we provide a step-by-step beginner's guide for performing multi-elemental, intramolecular and site-specific stable isotope analysis in unlabeled polar solutes by direct infusion. Using a widely available calibration solution, isotopocules of trifluoroacetic acid and immonium ions from the model peptide MRFA are quantified. In the second approach, nitrate is used as a simple model for a flow injection routine that enables access to a diverse range of naturally occurring isotopic signatures in inorganic oxyanions. Each procedure takes 2-3 h to complete and requires expertise only in general mass spectrometry. The workflows use optimized Orbitrap IRMS data-extraction and -processing software and are transferable to various analytes amenable to soft ionization, including metabolites, peptides, drugs and environmental pollutants. Optimized mass spectrometry systems will enable intramolecular isotope research in many areas of biology.

6.
J Am Soc Mass Spectrom ; 34(4): 525-537, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971362

RESUMO

For a generation or more, the mass spectrometry that developed at the frontier of molecular biology was worlds apart from isotope ratio mass spectrometry, a label-free approach done on optimized gas-source magnetic sector instruments. Recent studies show that electrospray-ionization Orbitraps and other mass spectrometers widely used in the life sciences can be fine-tuned for high-precision isotope ratio analysis. Since isotope patterns form everywhere in nature based on well-understood principles, intramolecular isotope measurements allow unique insights into a fascinating range of research topics. This Perspective introduces a wider readership to current topics in stable isotope research with the aim of discussing how soft-ionization mass spectrometry coupled with ultrahigh mass resolution can enable long-envisioned progress. We highlight novel prospects of observing isotopes in intact polar compounds and speculate on future directions of this adventure into the overlapping realms of biology, chemistry, and geology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA