Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 38(6)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28169474

RESUMO

This study presents a new method to produce fluorescent particles. Established methods are based on the incorporation of conjugated dye molecules into dielectric polymer matrices or preparation of colloids, which are composed of fluorescent conjugated polymer. By contrast, this study presents a method where dielectric polyacrylonitrile is exposed to microwave radiation leading to an intramolecular cyclization reaction producing π-conjugated segments, which fluoresce blue. During this conversion, the particles shrink in diameter but as an ensemble they retain their monodispersity. This work investigates the optimal reaction conditions and characterizes the optical properties.


Assuntos
Resinas Acrílicas/química , Fluorescência , Temperatura Alta , Micro-Ondas , Resinas Acrílicas/síntese química , Cor , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
2.
ACS Appl Bio Mater ; 3(4): 2378-2384, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32832880

RESUMO

Living tissues dynamically modulate their structure and functions through physical and biochemical interactions in the three-dimensional (3D)-microenvironment for their homeostasis or the developmental process of an embryo. However, the manipulation of cellular functions in vitro is still challenging due to the lack of a dynamic material system that can vary the 3D-cellular microenvironment in time and space. Here, we show an in situ 3D-printing technique based on multiphoton lithography using a biocompatible photoresist, bio-ink. The bio-ink composed of protein-photosensitizer conjugates has the ability to cause singlet oxygen and cross-linking reaction to fabricate protein gels with submicrometer-scale precision. Remarkably, the conjugates substantially improve the cytocompatibility and the efficiency of gelation due to the stealth effect of rose bengal (RB) and efficient transfer of singlet oxygen to bovine serum albumin (BSA). 3D-printing in the presence of cells allows for the microfabrication of a protein scaffold and controlled single-cell behavior. This dynamic material system to direct cell fate may offer emerging applications for drug discovery and regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA