Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Genes Dev ; 33(5-6): 348-364, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30808657

RESUMO

RNAi and Polycomb repression play evolutionarily conserved and often coordinated roles in transcriptional silencing. Here, we show that, in the protozoan Tetrahymena thermophila, germline-specific internally eliminated sequences (IESs)-many related to transposable elements (TEs)-become transcriptionally activated in mutants deficient in the RNAi-dependent Polycomb repression pathway. Germline TE mobilization also dramatically increases in these mutants. The transition from noncoding RNA (ncRNA) to mRNA production accompanies transcriptional activation of TE-related sequences and vice versa for transcriptional silencing. The balance between ncRNA and mRNA production is potentially affected by cotranscriptional processing as well as RNAi and Polycomb repression. We posit that interplay between RNAi and Polycomb repression is a widely conserved phenomenon, whose ancestral role is epigenetic silencing of TEs.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas do Grupo Polycomb/genética , Proteínas de Protozoários/genética , Interferência de RNA , Tetrahymena thermophila/genética , Ativação Transcricional/genética , Epigênese Genética , Inativação Gênica , Mutação , RNA Mensageiro/genética , RNA não Traduzido/genética
2.
Proc Natl Acad Sci U S A ; 114(8): E1460-E1469, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28179571

RESUMO

Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.


Assuntos
Aves/genética , Tamanho do Genoma/genética , Genoma/genética , Mamíferos/genética , Animais , DNA/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Genômica/métodos , Filogenia
3.
BMC Genomics ; 19(1): 468, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914366

RESUMO

BACKGROUND: Transposable elements (TE) are an important source of evolutionary novelty in gene regulation. However, the mechanisms by which TEs contribute to gene expression are largely uncharacterized. RESULTS: Here, we leverage Roadmap and GTEx data to investigate the association of TEs with active and repressed chromatin in 24 tissues. We find 112 human TE families enriched in active regions of the genome across tissues. Short Interspersed Nuclear Elements (SINEs) and DNA transposons are the most frequently enriched classes, while Long Terminal Repeat Retrotransposons (LTRs) are often enriched in a tissue-specific manner. We report across-tissue variability in TE enrichment in active regions. Genes with consistent expression across tissues are less likely to be associated with TE insertions. TE presence in repressed regions similarly follows tissue-specific patterns. Moreover, different TE classes correlate with different repressive marks: LTRs and Long Interspersed Nuclear Elements (LINEs) are overrepresented in regions marked by H3K9me3, while the other TEs are more likely to overlap regions with H3K27me3. Young TEs are typically enriched in repressed regions and depleted in active regions. We detect multiple instances of TEs that are enriched in tissue-specific active regulatory regions. Such TEs contain binding sites for transcription factors that are master regulators for the given tissue. These TEs are enriched in intronic enhancers, and their tissue-specific enrichment correlates with tissue-specific variations in the expression of the nearest genes. CONCLUSIONS: We provide an integrated overview of the contribution of TEs to human gene regulation. Expanding previous analyses, we demonstrate that TEs can potentially contribute to the turnover of regulatory sequences in a tissue-specific fashion.


Assuntos
Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Motivos de Nucleotídeos , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo , Sítios de Ligação , Humanos , Especificidade de Órgãos , Sequências Repetidas Terminais , Fatores de Transcrição/genética
4.
Trends Genet ; 30(10): 439-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25218058

RESUMO

Thousands of genes encoding long noncoding RNAs (lncRNAs) have been identified in all vertebrate genomes thus far examined. The list of lncRNAs partaking in arguably important biochemical, cellular, and developmental activities is steadily growing. However, it is increasingly clear that lncRNA repertoires are subject to weak functional constraint and rapid turnover during vertebrate evolution. We discuss here some of the factors that may explain this apparent paradox, including relaxed constraint on sequence to maintain lncRNA structure/function, extensive redundancy in the regulatory circuits in which lncRNAs act, as well as adaptive and non-adaptive forces such as genetic drift. We explore the molecular mechanisms promoting the birth and rapid evolution of lncRNA genes, with an emphasis on the influence of bidirectional transcription and transposable elements, two pervasive features of vertebrate genomes. Together these properties reveal a remarkably dynamic and malleable noncoding transcriptome which may represent an important source of robustness and evolvability.


Assuntos
Evolução Molecular , RNA Longo não Codificante , Animais , Elementos de DNA Transponíveis , Éxons , Humanos , Conformação de Ácido Nucleico , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , Transcrição Gênica
5.
PLoS Genet ; 10(8): e1004552, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25166013

RESUMO

During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES). IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ) pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium DNA cleavage factory, enabling tight coupling between DSB introduction and repair during PGR.


Assuntos
Cromossomos/genética , Quebras de DNA de Cadeia Dupla , Rearranjo Gênico/genética , Instabilidade Genômica , Paramecium tetraurellia/genética , Sequência de Bases/genética , Núcleo Celular/genética , Clivagem do DNA , Reparo do DNA , DNA de Protozoário/genética , Genoma , Células Germinativas , Transposases/metabolismo
6.
Genes Dev ; 23(21): 2478-83, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19884254

RESUMO

Programmed genome rearrangements drive functional gene assembly in ciliates during the development of the somatic macronucleus. The elimination of germline sequences is directed by noncoding RNAs and is initiated by DNA double-strand breaks, but the enzymes responsible for DNA cleavage have not been identified. We show here that PiggyMac (Pgm), a domesticated piggyBac transposase, is required for these rearrangements in Paramecium tetraurelia. A GFP-Pgm fusion localizes in developing macronuclei, where rearrangements take place, and RNAi-mediated silencing of PGM abolishes DNA cleavage. This is the first in vivo evidence suggesting an essential endonucleolytic function of a domesticated piggyBac transposase.


Assuntos
Rearranjo Gênico/genética , Genes de Protozoários/genética , Paramecium tetraurellia/enzimologia , Paramecium tetraurellia/genética , Proteínas de Protozoários/metabolismo , Transposases/metabolismo , Animais , DNA de Protozoário/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica
7.
BMC Genomics ; 17: 344, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27164953

RESUMO

BACKGROUND: Many new Drosophila genomes have been sequenced in recent years using new-generation sequencing platforms and assembly methods. Transposable elements (TEs), being repetitive sequences, are often misassembled, especially in the genomes sequenced with short reads. Consequently, the mobile fraction of many of the new genomes has not been analyzed in detail or compared with that of other genomes sequenced with different methods, which could shed light into the understanding of genome and TE evolution. Here we compare the TE content of three genomes: D. buzzatii st-1, j-19, and D. mojavensis. RESULTS: We have sequenced a new D. buzzatii genome (j-19) that complements the D. buzzatii reference genome (st-1) already published, and compared their TE contents with that of D. mojavensis. We found an underestimation of TE sequences in Drosophila genus NGS-genomes when compared to Sanger-genomes. To be able to compare genomes sequenced with different technologies, we developed a coverage-based method and applied it to the D. buzzatii st-1 and j-19 genome. Between 10.85 and 11.16 % of the D. buzzatii st-1 genome is made up of TEs, between 7 and 7,5 % of D. buzzatii j-19 genome, while TEs represent 15.35 % of the D. mojavensis genome. Helitrons are the most abundant order in the three genomes. CONCLUSIONS: TEs in D. buzzatii are less abundant than in D. mojavensis, as expected according to the genome size and TE content positive correlation. However, TEs alone do not explain the genome size difference. TEs accumulate in the dot chromosomes and proximal regions of D. buzzatii and D. mojavensis chromosomes. We also report a significantly higher TE density in D. buzzatii and D. mojavensis X chromosomes, which is not expected under the current models. Our easy-to-use correction method allowed us to identify recently active families in D. buzzatii st-1 belonging to the LTR-retrotransposon superfamily Gypsy.


Assuntos
Elementos de DNA Transponíveis , Drosophila/genética , Genoma de Inseto , Sequências Repetitivas de Ácido Nucleico , Animais , Cromossomos de Insetos , Genômica/métodos
8.
Proc Natl Acad Sci U S A ; 110(1): 234-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248290

RESUMO

A revelation of the genomic age has been the contributions of the mobile DNA segments called transposable elements to chromosome structure, function, and evolution in virtually all organisms. Substantial fractions of vertebrate genomes derive from transposable elements, being dominated by retroelements that move via RNA intermediates. Although many of these elements have been inactivated by mutation, several active retroelements remain. Vertebrate genomes also contain substantial quantities and a high diversity of cut-and-paste DNA transposons, but no active representative of this class has been identified in mammals. Here we show that a cut-and-paste element called piggyBat, which has recently invaded the genome of the little brown bat (Myotis lucifugus) and is a member of the piggyBac superfamily, is active in its native form in transposition assays in bat and human cultured cells, as well as in the yeast Saccharomyces cerevisiae. Our study suggests that some DNA transposons are still actively shaping some mammalian genomes and reveals an unprecedented opportunity to study the mechanism, regulation, and genomic impact of cut-and-paste transposition in a natural mammalian host.


Assuntos
Quirópteros/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Genoma/genética , Animais , Sequência de Bases , Células Cultivadas , Biologia Computacional , Primers do DNA/genética , Elementos de DNA Transponíveis/fisiologia , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae
9.
PLoS Genet ; 9(4): e1003470, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637635

RESUMO

Advances in vertebrate genomics have uncovered thousands of loci encoding long noncoding RNAs (lncRNAs). While progress has been made in elucidating the regulatory functions of lncRNAs, little is known about their origins and evolution. Here we explore the contribution of transposable elements (TEs) to the makeup and regulation of lncRNAs in human, mouse, and zebrafish. Surprisingly, TEs occur in more than two thirds of mature lncRNA transcripts and account for a substantial portion of total lncRNA sequence (~30% in human), whereas they seldom occur in protein-coding transcripts. While TEs contribute less to lncRNA exons than expected, several TE families are strongly enriched in lncRNAs. There is also substantial interspecific variation in the coverage and types of TEs embedded in lncRNAs, partially reflecting differences in the TE landscapes of the genomes surveyed. In human, TE sequences in lncRNAs evolve under greater evolutionary constraint than their non-TE sequences, than their intronic TEs, or than random DNA. Consistent with functional constraint, we found that TEs contribute signals essential for the biogenesis of many lncRNAs, including ~30,000 unique sites for transcription initiation, splicing, or polyadenylation in human. In addition, we identified ~35,000 TEs marked as open chromatin located within 10 kb upstream of lncRNA genes. The density of these marks in one cell type correlate with elevated expression of the downstream lncRNA in the same cell type, suggesting that these TEs contribute to cis-regulation. These global trends are recapitulated in several lncRNAs with established functions. Finally a subset of TEs embedded in lncRNAs are subject to RNA editing and predicted to form secondary structures likely important for function. In conclusion, TEs are nearly ubiquitous in lncRNAs and have played an important role in the lineage-specific diversification of vertebrate lncRNA repertoires.


Assuntos
Elementos de DNA Transponíveis , RNA Longo não Codificante , Animais , Éxons , Humanos , Íntrons , RNA Longo não Codificante/genética , Vertebrados/genética
10.
Proc Natl Acad Sci U S A ; 110(51): 20645-50, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297902

RESUMO

Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.


Assuntos
Adaptação Fisiológica/fisiologia , Boidae , Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Genoma/fisiologia , Transcrição Gênica/fisiologia , Animais , Boidae/genética , Boidae/metabolismo , Ciclo Celular/fisiologia , Humanos , Especificidade de Órgãos/fisiologia
11.
Mol Biol Evol ; 31(7): 1816-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24809961

RESUMO

The integration and fixation preferences of DNA transposons, one of the major classes of eukaryotic transposable elements, have never been evaluated comprehensively on a genome-wide scale. Here, we present a detailed study of the distribution of DNA transposons in the human and bat genomes. We studied three groups of DNA transposons that integrated at different evolutionary times: 1) ancient (>40 My) and currently inactive human elements, 2) younger (<40 My) bat elements, and 3) ex vivo integrations of piggyBat and Sleeping Beauty elements in HeLa cells. Although the distribution of ex vivo elements reflected integration preferences, the distribution of human and (to a lesser extent) bat elements was also affected by selection. We used regression techniques (linear, negative binomial, and logistic regression models with multiple predictors) applied to 20-kb and 1-Mb windows to investigate how the genomic landscape in the vicinity of DNA transposons contributes to their integration and fixation. Our models indicate that genomic landscape explains 16-79% of variability in DNA transposon genome-wide distribution. Importantly, we not only confirmed previously identified predictors (e.g., DNA conformation and recombination hotspots) but also identified several novel predictors (e.g., signatures of double-strand breaks and telomere hexamer). Ex vivo integrations showed a bias toward actively transcribed regions. Older DNA transposons were located in genomic regions scarce in most conserved elements-likely reflecting purifying selection. Our study highlights how DNA transposons are integral to the evolution of bat and human genomes, and has implications for the development of DNA transposon assays for gene therapy and mutagenesis applications.


Assuntos
Quirópteros/genética , Elementos de DNA Transponíveis , Evolução Molecular , Animais , Variação Genética , Genoma , Células HeLa , Humanos , Modelos Genéticos , Mutagênese Insercional , Análise de Regressão
12.
BMC Genomics ; 15: 545, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24981367

RESUMO

BACKGROUND: Piwi-interacting RNAs (piRNAs) are a recently discovered class of small non-coding RNAs whose best-understood function is to repress mobile element (ME) activity in animal germline. To date, nearly all piRNA studies have been conducted in model organisms and little is known about piRNA diversity, target specificity and biological function in human. RESULTS: Here we performed high-throughput sequencing of piRNAs from three human adult testis samples. We found that more than 81% of the ~17 million putative piRNAs mapped to ~6,000 piRNA-producing genomic clusters using a relaxed definition of clusters. A set of human protein-coding genes produces a relatively large amount of putative piRNAs from their 3'UTRs, and are significantly enriched for certain biological processes, suggestive of non-random sampling by the piRNA biogenesis machinery. Up to 16% of putative piRNAs mapped to a few hundred annotated long non-coding RNA (lncRNA) genes, suggesting that some lncRNA genes can act as piRNA precursors. Among major ME families, young families of LTR and endogenous retroviruses have a greater association with putative piRNAs than other MEs. In addition, piRNAs preferentially mapped to specific regions in the consensus sequences of several ME (sub)families and some piRNA mapping peaks showed patterns consistent with the "ping-pong" cycle of piRNA targeting and amplification. CONCLUSIONS: Overall our data provide a comprehensive analysis and improved annotation of human piRNAs in adult human testes and shed new light into the relationship of piRNAs with protein-coding genes, lncRNAs, and mobile genetic elements in human.


Assuntos
RNA Interferente Pequeno/metabolismo , Testículo/metabolismo , Transcriptoma , Regiões 3' não Traduzidas , Adulto , Sequência de Bases , Mapeamento Cromossômico , Sequência Consenso , Ontologia Genética , Humanos , Masculino , Família Multigênica , Interferência de RNA , RNA Longo não Codificante , RNA Interferente Pequeno/genética , Retroelementos , Análise de Sequência de RNA
13.
PLoS Genet ; 7(4): e1002049, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533177

RESUMO

During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics.


Assuntos
DNA Ligases/metabolismo , Reparo do DNA , Genoma de Protozoário , Paramecium/genética , Proteínas de Protozoários/genética , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP , DNA Ligases/genética , Replicação do DNA , Elementos de DNA Transponíveis , DNA de Protozoário/metabolismo , Paramecium/crescimento & desenvolvimento , Paramecium/metabolismo , Filogenia , Proteínas de Protozoários/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Transcrição Gênica
14.
Nucleic Acids Res ; 39(10): 4249-64, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21216825

RESUMO

Proteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels. Piwi subclade members appear to have been lost in plants and fungi and were mostly studied in metazoa, where they bind piRNAs and have essential roles in sexual reproduction. Their presence in ciliates, unicellular organisms harbouring both germline micronuclei and somatic macronuclei, offers an interesting perspective on the evolution of their functions. Here, we report phylogenetic and functional analyses of the 15 Piwi genes from Paramecium tetraurelia. We show that four constitutively expressed proteins are involved in siRNA pathways that mediate gene silencing throughout the life cycle. Two other proteins, specifically expressed during meiosis, are required for accumulation of scnRNAs during sexual reproduction and for programmed genome rearrangements during development of the somatic macronucleus. Our results indicate that Paramecium Piwi proteins have evolved to perform both vegetative and sexual functions through mechanisms ranging from post-transcriptional mRNA cleavage to epigenetic regulation of genome rearrangements.


Assuntos
Paramecium tetraurellia/genética , Proteínas de Protozoários/fisiologia , Interferência de RNA , Genoma , Paramecium tetraurellia/crescimento & desenvolvimento , Paramecium tetraurellia/metabolismo , Filogenia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , RNA de Cadeia Dupla/metabolismo , Transgenes
15.
BMC Genomics ; 11: 547, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20932287

RESUMO

BACKGROUND: The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. RESULTS: We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. CONCLUSIONS: A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention.


Assuntos
Cílios/genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Paramecium tetraurellia/genética , Poliploidia , Animais , Análise por Conglomerados , Duplicação Gênica/genética , Genes de Protozoários/genética , Análise de Sequência com Séries de Oligonucleotídeos , Paramecium tetraurellia/crescimento & desenvolvimento , Vesículas Secretórias/genética , Fatores de Tempo
16.
PLoS One ; 15(9): e0238991, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946486

RESUMO

BACKGROUND: Invasive Staphylococcus aureus infections are a common cause of morbidity and mortality in children. In the early 2000's the proportion of infections due the methicillin-resistant S. aureus (MRSA) increased rapidly. We described the clinical and molecular epidemiology of invasive S. aureus disease in a pediatric population. METHODS: We prospectively identified children in Utah with invasive S. aureus infections. Medical records were reviewed to determine diagnosis and clinical characteristics. Isolates were genotyped using multi-locus sequence typing. The presence of genes encoding the Panton-Valentine leukocidin (PVL) was determined using polymerase chain reaction. RESULTS: Over a 4-year period between January 2009 and December 2012, we identified 357 children, hospitalized at Primary Children's Hospital, with invasive S. aureus infections and isolates available for the study. Methicillin-susceptible S. aureus (MSSA) caused 79% of disease, while MRSA caused only 21% of disease. Mortality associated with invasive S. aureus infection was 3.6%. The most common diagnoses were osteoarticular infections (38%) followed by central line associated blood stream infections (19%) and pneumonia (12%). We identified 41 multi-locus sequence types. The majority of isolates belonged to 6 predominant clonal complexes (CC5, CC8, CC15, CC30, CC45, CC59). PVL was present in a minority (16%) of isolates, of which most were ST8 MRSA. CONCLUSIONS: MSSA was the primary cause of invasive S. aureus infections at our institution throughout the study period. A limited number of predominant strains accounted for the majority of invasive disease. The classic virulence factor PVL was uncommon in MSSA isolates. Further study is needed to improve our understanding of S. aureus virulence and disease pathogenesis.


Assuntos
Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética , Antibacterianos/uso terapêutico , Técnicas de Tipagem Bacteriana/métodos , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Testes de Sensibilidade Microbiana , Epidemiologia Molecular/métodos , Tipagem de Sequências Multilocus/métodos , Infecções Estafilocócicas/genética , Staphylococcus aureus/patogenicidade , Utah/epidemiologia , Fatores de Virulência/genética
17.
DNA Repair (Amst) ; 77: 96-108, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30928893

RESUMO

DNA double-strand breaks (DSBs) induced by genotoxic agents can cause cell death or contribute to chromosomal instability, a major driving force of cancer. By contrast, Spo11-dependent DSBs formed during meiosis are aimed at generating genetic diversity. In eukaryotes, CtIP and the Mre11 nuclease complex are essential for accurate processing and repair of both unscheduled and programmed DSBs by homologous recombination (HR). Here, we applied bioinformatics and genetic analysis to identify Paramecium tetraurelia CtIP (PtCtIP), the smallest known Sae2/Ctp1/CtIP ortholog, as a key factor for the completion of meiosis and the recovery of viable sexual progeny. Using in vitro assays, we find that purified recombinant PtCtIP preferentially binds to double-stranded DNA substrates but does not contain intrinsic nuclease activity. Moreover, mutation of the evolutionarily conserved C-terminal 'RHR' motif abrogates DNA binding of PtCtIP but not its ability to functionally interact with Mre11. Translating our findings into mammalian cells, we provide evidence that disruption of the 'RHR' motif abrogates accumulation of human CtIP at sites of DSBs. Consequently, cells expressing the DNA binding mutant CtIPR837A/R839A are defective in DSB resection and HR. Collectively, our work highlights minimal structural requirements for CtIP protein family members to facilitate the processing of DSBs, thereby maintaining genome stability as well as enabling sexual reproduction.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Paramecium tetraurellia/genética , Paramecium tetraurellia/fisiologia , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , DNA de Protozoário/metabolismo , Meiose/genética , Paramecium tetraurellia/metabolismo , Proteínas de Protozoários/química , Reprodução/genética
18.
G3 (Bethesda) ; 8(5): 1391-1398, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29519939

RESUMO

The domestic rock pigeon (Columba livia) is among the most widely distributed and phenotypically diverse avian species. C. livia is broadly studied in ecology, genetics, physiology, behavior, and evolutionary biology, and has recently emerged as a model for understanding the molecular basis of anatomical diversity, the magnetic sense, and other key aspects of avian biology. Here we report an update to the C. livia genome reference assembly and gene annotation dataset. Greatly increased scaffold lengths in the updated reference assembly, along with an updated annotation set, provide improved tools for evolutionary and functional genetic studies of the pigeon, and for comparative avian genomics in general.


Assuntos
Columbidae/genética , Genoma , Anotação de Sequência Molecular , Animais , Mapeamento Cromossômico , Elementos de DNA Transponíveis/genética , Biblioteca Gênica , Marcadores Genéticos , Genótipo , Sintenia/genética , Transcriptoma/genética
19.
Ann N Y Acad Sci ; 1389(1): 164-185, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27997700

RESUMO

Birds, the most species-rich monophyletic group of land vertebrates, have been subject to some of the most intense sequencing efforts to date, making them an ideal case study for recent developments in genomics research. Here, we review how our understanding of bird genomes has changed with the recent sequencing of more than 75 species from all major avian taxa. We illuminate avian genome evolution from a previously neglected perspective: their repetitive genomic parasites, transposable elements (TEs) and endogenous viral elements (EVEs). We show that (1) birds are unique among vertebrates in terms of their genome organization; (2) information about the diversity of avian TEs and EVEs is changing rapidly; (3) flying birds have smaller genomes yet more TEs than flightless birds; (4) current second-generation genome assemblies fail to capture the variation in avian chromosome number and genome size determined with cytogenetics; (5) the genomic microcosm of bird-TE "arms races" has yet to be explored; and (6) upcoming third-generation genome assemblies suggest that birds exhibit stability in gene-rich regions and instability in TE-rich regions. We emphasize that integration of cytogenetics and single-molecule technologies with repeat-resolved genome assemblies is essential for understanding the evolution of (bird) genomes.


Assuntos
Aves/genética , Elementos de DNA Transponíveis , Variação Genética , Genoma , Genômica , Animais , Evolução Biológica , Evolução Molecular , Filogenia
20.
Genome Biol ; 17(1): 111, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27224977

RESUMO

BACKGROUND: High-throughput sequencing enables unbiased profiling of microbial communities, universal pathogen detection, and host response to infectious diseases. However, computation times and algorithmic inaccuracies have hindered adoption. RESULTS: We present Taxonomer, an ultrafast, web-tool for comprehensive metagenomics data analysis and interactive results visualization. Taxonomer is unique in providing integrated nucleotide and protein-based classification and simultaneous host messenger RNA (mRNA) transcript profiling. Using real-world case-studies, we show that Taxonomer detects previously unrecognized infections and reveals antiviral host mRNA expression profiles. To facilitate data-sharing across geographic distances in outbreak settings, Taxonomer is publicly available through a web-based user interface. CONCLUSIONS: Taxonomer enables rapid, accurate, and interactive analyses of metagenomics data on personal computers and mobile devices.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Metagenômica/métodos , Software , Transcriptoma , Algoritmos , Bactérias/classificação , Bactérias/genética , Bases de Dados de Ácidos Nucleicos , Fungos/classificação , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interface Usuário-Computador , Vírus/classificação , Vírus/genética , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA