Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Microbiol ; 87(3): 455-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23231070

RESUMO

The interactions between bacterial pathogens and their eukaryotic hosts are vital in determining the outcome of infections. Bacterial pathogens employ molecular sensors to detect and facilitate adaptation to changes in their niche. The sensing of these extracellular signals enables the pathogen to navigate within mammalian hosts. Intercellular bacterial communication is facilitated by the production and sensing of autoinducer (AI) molecules via quorum sensing. More recently, AI-3 and the host neuroendocrine (NE) hormones adrenaline and noradrenaline were reported to display cross-talk for the activation of the same signalling pathways. Remarkably, there is increasing evidence to suggest that enteric bacteria sense and respond to the host NE stress hormones adrenaline and noradrenaline to modulate virulence. These responses can be inhibited by α and ß-adrenergic receptor antagonists implying a bacterial receptor-based sensing and signalling cascade. In Escherichia coli O157:H7 and Salmonella, QseC has been proposed as the adrenergic receptor. Strikingly, there is an increasing body of evidence that not all the bacterial adrenergic responses require signalling through QseC. Here we provide additional hypotheses to reconcile these observations implicating the existence of alternative adrenergic receptors including BasS, QseE and CpxA and their associated signalling cascades with major roles in interkingdom communication.


Assuntos
Epinefrina/metabolismo , Escherichia coli O157/metabolismo , Interações Hospedeiro-Patógeno , Norepinefrina/metabolismo , Salmonella/metabolismo , Transdução de Sinais , Escherichia coli O157/patogenicidade , Salmonella/patogenicidade , Virulência
2.
PLoS Pathog ; 8(1): e1002500, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22291596

RESUMO

Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Citoesqueleto/metabolismo , Infecções por Salmonella/metabolismo , Salmonella/metabolismo , Salmonella/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoesqueleto/genética , Feminino , Flagelos/genética , Flagelos/metabolismo , Deleção de Genes , Ilhas Genômicas/fisiologia , Camundongos , Salmonella/genética , Infecções por Salmonella/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Virulência/genética
3.
Adv Exp Med Biol ; 817: 241-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24997037

RESUMO

Host-pathogen communication appears to be crucial in establishing the outcome of bacterial infections. There is increasing evidence to suggest that this communication can take place by bacterial pathogens sensing and subsequently responding to host neuroendocrine (NE) stress hormones. Bacterial pathogens have developed mechanisms allowing them to eavesdrop on these communication pathways within their hosts. These pathogens can use intercepted communication signals to adjust their fitness to persist and cause disease in their hosts. Recently, there have been numerous studies highlighting the ability of NE hormones to act as an environmental cue for pathogens, helping to steer their responses during host infection. Host NE hormone sensing can take place indirectly or directly via bacterial adrenergic receptors (BARs). The resulting changes in bacterial gene expression can be of strategic benefit to the pathogen. Furthermore, it is intriguing that not only can bacteria sense NE stress hormones but they are also able to produce key signalling molecules known as autoinducers. The rapid advances in our knowledge of the human microbiome, and its impact on health and disease highlights the potential importance of communication between the microbiota, pathogens and the host. It is indeed likely that the microbiota input significantly in the neuroendocrinological homeostasis of the host by catabolic, anabolic, and signalling processes. The arrival of unwanted guests, such as bacterial pathogens, clearly has a major impact on these delicately balanced interactions. Unravelling the pathways involved in interkingdom communication between invading bacterial pathogens, the resident microbiota, and hosts, may provide novel targets in our continuous search for new antimicrobials to control disease.


Assuntos
Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/fisiologia , Microbiota/fisiologia , Neurotransmissores/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Percepção de Quorum , Receptores Adrenérgicos/fisiologia
4.
EMBO Rep ; 12(3): 252-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21331094

RESUMO

Salmonella enterica serovar Typhi (S. typhi) causes typhoid fever. We show that exposure of S. typhi to neuroendocrine stress hormones results in haemolysis, which is associated with the release of haemolysin E in membrane vesicles. This effect is attributed to increased expression of the small RNA micA and RNA chaperone Hfq, with concomitant downregulation of outer membrane protein A. Deletion of micA or the two-component signal-transduction system, CpxAR, abolishes the phenotype. The hormone response is inhibited by the ß-blocker propranolol. We provide mechanistic insights into the basis of neuroendocrine hormone-mediated haemolysis by S. typhi, increasing our understanding of inter-kingdom signalling.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Epinefrina/fisiologia , Proteínas Hemolisinas/metabolismo , Norepinefrina/fisiologia , Salmonella typhi/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação para Baixo , Epinefrina/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/genética , Hemólise , Hormônios/genética , Hormônios/metabolismo , Norepinefrina/farmacologia , Propranolol/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Salmonella typhi/genética , Salmonella typhi/fisiologia , Transdução de Sinais , Estresse Fisiológico
5.
J Bacteriol ; 191(23): 7253-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19783624

RESUMO

Bacterial species can communicate by producing and sensing small autoinducer molecules by a process known as quorum sensing. Salmonella enterica produces autoinducer 2 (AI-2) via the luxS synthase gene, which is used by some bacterial pathogens to coordinate virulence gene expression with population density. We investigated whether the luxS gene might affect the ability of Salmonella enterica serovar Typhimurium to invade epithelial cells. No differences were found between the wild-type strain of S. Typhimurium, SL1344, and its isogenic luxS mutant with respect to the number and morphology of the membrane ruffles induced or their ability to invade epithelial cells. The dynamics of the ruffling process were also similar in the wild-type strain (SL1344) and the luxS mutant. Furthermore, comparing the Salmonella pathogenicity island 1 (SPI-1) type 3 secretion profiles of wild-type SL1344 and the luxS mutant by Western blotting and measuring the expression of a single-copy green fluorescent protein fusion to the prgH (an essential SPI-1 gene) promoter indicated that SPI-1 expression and activity are similar in the wild-type SL1344 and luxS mutant. Genetic deletion of luxS did not alter the virulence of S. Typhimurium in the mouse model, and therefore, it appears that luxS does not play a significant role in regulating invasion of Salmonella in vitro or in vivo.


Assuntos
Proteínas de Bactérias/fisiologia , Liases de Carbono-Enxofre/fisiologia , Células Epiteliais/microbiologia , Percepção de Quorum/fisiologia , Salmonella enterica/metabolismo , Actinas/metabolismo , Animais , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Linhagem Celular , Cães , Feminino , Citometria de Fluxo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Contraste de Fase , Percepção de Quorum/genética , Salmonella enterica/genética
6.
FEMS Immunol Med Microbiol ; 52(2): 237-46, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18177343

RESUMO

Live Salmonella vaccines are limited in use by the inherent toxicity of the lipopolysaccharide. The waaN gene encodes a myristyl transferase required for the secondary acylation of lipid A in lipopolysaccharide. A waaN mutant exhibits reduced induction of the inflammatory cytokines associated with lipopolysaccharide toxicity. Here the characteristics of a Salmonella enterica serovar Typhimurium aroA waaN mutant (SK100) in vitro and in vivo compared with its parent aroA strain (SL3261) were described. Phenotypic analysis of purified lipopolysaccharide obtained from SK100 confirmed that the physical and biological activities of the lipopolysaccharide had been altered. Nevertheless both strains had similar patterns of colonization and persistence in mice and significantly the aroA waaN mutant was equally as effective as the parent at protecting against challenge with wild-type S. Typhimurium. Furthermore, a SK100 strain was constructed expressing both tetanus toxin fragment C and the circumsporozoite protein of a malaria parasite. In marked contrast to its isogenic parent, the new attenuated strain induces significantly enhanced immune responses against the circumsporozoite protein. The waaN mutation enhances the ability of this strain to elicit immune responses towards guest antigens. This study provides important insights into the development of safe and effective multivalent Salmonella vaccines.


Assuntos
Vacinas Antimaláricas/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/genética , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antiprotozoários/sangue , Proteínas de Bactérias/genética , Linhagem Celular , Contagem de Colônia Microbiana , Feminino , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/toxicidade , Fígado/microbiologia , Macrófagos/microbiologia , Vacinas Antimaláricas/genética , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Polissacarídeos Bacterianos/isolamento & purificação , Polissacarídeos Bacterianos/toxicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/prevenção & controle , Vacinas contra Salmonella/genética , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Baço/microbiologia , Toxina Tetânica/genética , Toxina Tetânica/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Vacinas Tíficas-Paratíficas/genética , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
7.
Nat Neurosci ; 19(3): 504-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780511

RESUMO

Microglia have critical roles in neural development, homeostasis and neuroinflammation and are increasingly implicated in age-related neurological dysfunction. Neurodegeneration often occurs in disease-specific, spatially restricted patterns, the origins of which are unknown. We performed to our knowledge the first genome-wide analysis of microglia from discrete brain regions across the adult lifespan of the mouse, and found that microglia have distinct region-dependent transcriptional identities and age in a regionally variable manner. In the young adult brain, differences in bioenergetic and immunoregulatory pathways were the major sources of heterogeneity and suggested that cerebellar and hippocampal microglia exist in a more immune-vigilant state. Immune function correlated with regional transcriptional patterns. Augmentation of the distinct cerebellar immunophenotype and a contrasting loss in distinction of the hippocampal phenotype among forebrain regions were key features during aging. Microglial diversity may enable regionally localized homeostatic functions but could also underlie region-specific sensitivities to microglial dysregulation and involvement in age-related neurodegeneration.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Microglia/fisiologia , Envelhecimento/genética , Animais , Camundongos , Fenótipo , Transcriptoma
8.
Curr Pharm Biotechnol ; 16(2): 87-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25420724

RESUMO

Through many millennia of continuous evolution hosts and microorganisms have developed sophisticated and sometimes extremely complex mechanisms of coexisting through symbiosis and mutualism. It is now known that in humans, the population of commensal bacteria on or inside the body significantly outnumbers the host cells. Despite their numerical superiority, microorganisms have adjusted their physiological clocks to benefit themselves and at the same time their host through the maintenance of a healthy state. This very fine and multifaceted balance can be disrupted occasionally through the introduction of pathogens in the commensal bacterial population. The equilibrium is then perturbed to promote dysbiosis and the onset of disease. Through myriads of interactions within their host milieu, bacterial pathogens have developed mechanisms to sense bacterial or host-derived signalling molecules and adjust their physiology accordingly to favour their survival and propagation within their host. At the same time, the host has evolved systems to interfere with bacterial signalling in such a way as to support pathogen clearing and re-establishment of the balance. An example of a captivating interaction is the one involving the catecholamine hormones adrenaline and noradrenaline. This article will summarise the major findings involving host pathogen communication through bacterial or host-derived molecules and discuss ways to take advantage of our potential to interfere with this intricate signalling to profit the host and prolong a healthy life.


Assuntos
Fenômenos Fisiológicos Bacterianos , Interações Hospedeiro-Patógeno , Animais , Bactérias/patogenicidade , Hormônios/metabolismo , Humanos , Percepção de Quorum , Virulência
9.
Virulence ; 2(4): 371-4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21758008

RESUMO

The ability of bacterial pathogens to sense their immediate environment plays a significant role on their capacity to survive and cause disease. Salmonella enterica serovar typhi (S. typhi) is an exclusively human pathogen that causes typhoid fever. In a recent study, we have shown that S. typhi senses and responds to host neuroendocrine stress hormones to release the toxin hemolysin E. Hormone-mediated hemolysis by S. typhi was inhibited by the ß-blocker propranolol and was dependent on the presence of the CpxAR signal transduction system. Furthermore, we demonstrate that normal expression of the small RNA micA is necessary for the arbitration of the response to host  neuroendocrine hormones. This leads to a significant decrease in the levels of the outer membrane protein OmpA and increased formation of membrane vesicles containing HlyE. The exploration of host pathogen interactions is  of paramount importance in deciphering pathogen virulence and the discovery of novel treatments.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Hormônios/metabolismo , Interações Hospedeiro-Patógeno , Sistemas Neurossecretores/metabolismo , Salmonella typhi/patogenicidade , Febre Tifoide/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética , Humanos , Salmonella typhi/genética , Salmonella typhi/metabolismo , Febre Tifoide/microbiologia , Virulência
11.
Microb Pathog ; 42(1): 2-10, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17081727

RESUMO

Pathogenic bacteria employ a variety of mechanisms to resist a barrage of stresses they encounter during active growth in or outside the host as well as during growth stasis. An in silico screen of the Salmonella genome sequence revealed that Salmonella typhimurium LT2 possesses a homologue belonging to the universal stress protein A (UspA) family. We assessed the transcriptional profile of uspA in S. typhimurium C5 by constructing a lacZ fusion revealing that uspA is induced by metabolic, oxidative, and temperature stresses. The highest transcriptional levels occurred in cells entering stationary phase, an observation consistent with expression patterns in Escherichia coli. The protein was purified as a fusion with GST (UspA(F)) and antibodies raised against UspA(F) revealed elevated protein levels in stressed and growth-arrested cells. Inactivation of uspA in S. typhimurium C5, lead to increased susceptibility to stress conditions. Furthermore, UspA makes an important contribution to the in vivo virulence of Salmonella in mice thus highlighting the importance of stress resistance regulation in pathogenicity and survival within the host.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Choque Térmico/fisiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Choque Térmico/genética , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Temperatura , Transcrição Gênica , Virulência
12.
Microbiology (Reading) ; 149(Pt 10): 2749-2758, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14523108

RESUMO

Staphylococcus aureus has two superoxide dismutases (SODs), encoded by the sodA and sodM genes, which inactivate harmful superoxide radicals () encountered during host infection or generated from aerobic metabolism. The transcriptional start sites have been mapped and expression analysis on reporter fusions in both genes has been carried out. Under standard growth conditions, manganese (Mn), a mineral superoxide scavenger, elevated total SOD activity but had no effect on the transcription of either gene. Transcription of sodA and sodM was most strongly induced by either internally or externally generated, respectively. Sensitivity to internally generated was linked with SodA deficiency. Mn supplementation completely rescued a sodA mutant when challenged by internally generated, and this was growth-phase-dependent. Sensitivity to externally generated stress was only observed in a sodA sodM mutant and was Mn-independent. In a mouse abscess model of infection, isogenic sodA, sodM and sodA sodM mutants had reduced virulence compared to the parental strain, showing the importance of the enzymic scavenging system for the survival of the pathogen.


Assuntos
Proteínas de Bactérias/fisiologia , Staphylococcus aureus/enzimologia , Superóxido Dismutase/fisiologia , Manganês/farmacologia , Estresse Oxidativo , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Superóxidos/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA