RESUMO
Formation of lasting memories is believed to rely on structural alterations at the synaptic level. We had found that increased neuronal activity down-regulates Nogo receptor-1 (NgR1) in brain regions linked to memory formation and storage, and postulated this to be required for formation of lasting memories. We now show that mice with inducible overexpression of NgR1 in forebrain neurons have normal long-term potentiation and normal 24-h memory, but severely impaired month-long memory in both passive avoidance and swim maze tests. Blocking transgene expression normalizes these memory impairments. Nogo, Lingo-1, Troy, endogenous NgR1, and BDNF mRNA expression levels were not altered by transgene expression, suggesting that the impaired ability to form lasting memories is directly coupled to inability to down-regulate NgR1. Regulation of NgR1 may therefore serve as a key regulator of memory consolidation. Understanding the molecular underpinnings of synaptic rearrangements that carry lasting memories may facilitate development of treatments for memory dysfunction.
Assuntos
Regulação da Expressão Gênica/fisiologia , Memória/fisiologia , Proteínas da Mielina/fisiologia , Prosencéfalo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Eletrofisiologia , Immunoblotting , Imuno-Histoquímica , Hibridização In Situ , Aprendizagem em Labirinto/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nogo , Receptores do Fator de Necrose Tumoral/metabolismo , Teste de Desempenho do Rota-Rod , Transgenes/genéticaRESUMO
Molecular mechanisms preventing self-renewing brain stem cells from oncogenic transformation are poorly defined. We show that the expression levels of SOX5, SOX6, and SOX21 (SOX5/6/21) transcription factors increase in stem cells of the subventricular zone (SVZ) upon oncogenic stress, whereas their expression in human glioma decreases during malignant progression. Elevated levels of SOX5/6/21 promoted SVZ cells to exit the cell cycle, whereas genetic ablation of SOX5/6/21 dramatically increased the capacity of these cells to form glioma-like tumors in an oncogene-driven mouse brain tumor model. Loss-of-function experiments revealed that SOX5/6/21 prevent detrimental hyperproliferation of oncogene expressing SVZ cells by facilitating an antiproliferative expression profile. Consistently, restoring high levels of SOX5/6/21 in human primary glioblastoma cells enabled expression of CDK inhibitors and decreased p53 protein turnover, which blocked their tumorigenic capacity through cellular senescence and apoptosis. Altogether, these results provide evidence that SOX5/6/21 play a central role in driving a tumor suppressor response in brain stem cells upon oncogenic insult. Cancer Res; 77(18); 4985-97. ©2017 AACR.
Assuntos
Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB2/metabolismo , Fatores de Transcrição SOXD/fisiologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Senescência Celular , Feminino , Glioma/genética , Glioma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Oncogenes , Fatores de Transcrição SOXB2/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In the search for molecules that may alter the formation of amyloid-ß (Aß) protofibrils, it has been shown that the Nogo-system can interact and bind to amyloid-ß protein precursor and thus affect the amount of Aß that is formed and deposited in the brain. To further address this issue in vivo, we crossed mice that overexpress Nogo receptor 1 (NgR1), "MemoFlex", in forebrain neurons, with plaque forming APPswe/PSEN1(ΔE9) mice, to investigate if increased levels of NgR1 would influence plaque load or cognitive function in the resulting MemoFlex/APPswe/PSEN1(ΔE9) transgenic mice. We used a radial arm water maze and the Morris water maze to measure cognitive function. We did not find any significant effect of NgR1 overexpression on the performance of APPswe/PSEN1(ΔE9) mice in the radial arm water maze test. However, MemoFlex/APPswe/PSEN1(ΔE9) mice were found to be significantly impaired in the Morris water maze. We also analyzed the amount of plaques in the two mouse models without finding any significant difference in plaque load in the cerebral cortex or the hippocampal formation. It therefore appears that overexpression of NgR1 in APPswe/PSEN1(ΔE9) mice does not have any marked effects on Aß levels, yet appears to impair spatial cognitive abilities. We conclude that strong overexpression of NgR1 in forebrain neurons impairs aspects of cognitive function but does not markedly alter plaque load in plaque-forming APPswe/PSEN1(ΔE9) mice. Thus high levels of membrane-bound NgR1 present since early postnatal life does not influence the development of plaques in mice carrying the two human plaque-causing mutations APPswe and PSEN1(ΔE9).
Assuntos
Precursor de Proteína beta-Amiloide , Cognição/fisiologia , Proteínas da Mielina/biossíntese , Placa Amiloide/metabolismo , Presenilina-1 , Receptores de Superfície Celular/biossíntese , Comportamento Espacial/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Proteínas da Mielina/genética , Neurônios/metabolismo , Receptor Nogo 1 , Placa Amiloide/genética , Presenilina-1/genética , Desempenho Psicomotor/fisiologia , Receptores de Superfície Celular/genéticaRESUMO
Cell therapy aiming at the replacement of degenerated neurons is a very attractive approach. By using an established in vitro organotypic brain stem (BS) slice culture we screen for candidate donor cells, some of them being further functionally assessed in in vivo models of sensorineural hearing loss. Both in vitro and in vivo systems show that implanted cells face challenges of survival, targeted migration, differentiation and functional integration with the host tissue. Low success rates are possibly due to the lack of necessary neurotrophic factors, adhesion molecules and guiding cues. Olfactory ensheathing cells (OECs) have been shown to express a number of neurotrophic factors and to promote axonal growth through cell to cell interactions. In the present study we co-cultured OECs with organotypic BS slice in order to see if OECs can serve as a facilitator when screening candidate donor cells in an organotypic culture setup. Here we show that OECs when co-cultured with the auditory BS slice not only promote neurite outgrowth from the cochlear nucleus (CN) region of the BS slice but also support cells by having BS slice axons growing along their processes. These findings further suggest that OECs may enhance survival and targeted migration of candidate donor cells suitable for cell therapy in vitro and in vivo. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.