Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(31): e202300383, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36951115

RESUMO

Aromatic amides can be used to construct light-harvesting materials with valuable optical properties. The amide bond is formed using well-known coupling agents in near quantitative yield, as illustrated here through the synthesis of two boron dipyrromethene derivatives bearing an amide linkage. The primary concern with acyl amides is rotation around the C-N bond, leading to cis and trans isomers. Using NMR spectroscopy, quantum chemical calculations and critical comparison to simpler benzamides, the stereochemistry of the target compounds has been addressed. The N-cyclohexyl derivative gave diffraction quality crystals that established a trans geometry for the amide bond. Quantum chemical calculations support the trans geometry as being the lowest-energy structure in solution but indicate that inversion of the aryl ring is an important structural feature. Indeed, rotation around the C(sp2 )-C(aryl) bond has a strong influence on the solution-phase NMR spectra. The amide connection has minimal effect on the photophysical properties.

2.
Proc Natl Acad Sci U S A ; 117(33): 19705-19712, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747579

RESUMO

Photosystem II (PS II) captures solar energy and directs charge separation (CS) across the thylakoid membrane during photosynthesis. The highly oxidizing, charge-separated state generated within its reaction center (RC) drives water oxidation. Spectroscopic studies on PS II RCs are difficult to interpret due to large spectral congestion, necessitating modeling to elucidate key spectral features. Herein, we present results from time-dependent density functional theory (TDDFT) calculations on the largest PS II RC model reported to date. This model explicitly includes six RC chromophores and both the chlorin phytol chains and the amino acid residues <6 Å from the pigments' porphyrin ring centers. Comparing our wild-type model results with calculations on mutant D1-His-198-Ala and D2-His-197-Ala RCs, our simulated absorption-difference spectra reproduce experimentally observed shifts in known chlorophyll absorption bands, demonstrating the predictive capabilities of this model. We find that inclusion of both nearby residues and phytol chains is necessary to reproduce this behavior. Our calculations provide a unique opportunity to observe the molecular orbitals that contribute to the excited states that are precursors to CS. Strikingly, we observe two high oscillator strength, low-lying states, in which molecular orbitals are delocalized over ChlD1 and PheD1 as well as one weaker oscillator strength state with molecular orbitals delocalized over the P chlorophylls. Both these configurations are a match for previously identified exciton-charge transfer states (ChlD1+PheD1-)* and (PD2+PD1-)*. Our results demonstrate the power of TDDFT as a tool, for studies of natural photosynthesis, or indeed future studies of artificial photosynthetic complexes.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema II/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clorofila/química , Clorofila/metabolismo , Cianobactérias/química , Cianobactérias/genética , Cinética , Modelos Moleculares , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Thermosynechococcus
3.
J Phys Chem A ; 126(9): 1530-1541, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35230124

RESUMO

A boron dipyrromethene (BODIPY) derivative bearing a cis-proline residue at the meso-position crystallizes in the form of platelets with strong (i.e., ΦF = 0.34) red fluorescence, but the absorption and emission spectra differ markedly from those for dilute solutions. A key building block for the crystal is a pseudo-dimer where hydrogen bonding aligns the proline groups and separates the terminal chromophores by ca. 25 Å. Comparison with a covalently linked bichromophore suggests that one-dimensional (1D) excitonic coupling between the terminals is too small to perturb the optical properties. However, accretion of the pseudo-dimer forms narrow channels possessing a high density of chromophores. The resultant absorption spectrum exhibits strong excitonic splitting, which can be explained quantitatively using the extended dipole approach and allowing for coupling between ca. 30 BODIPY units. Fluorescence, which decays with a lifetime of 2.2 ns, is assigned to a delocalized and (slightly) super-radiant BODIPY dimer situated at the interface and populated via electronic energy transfer from the interior.


Assuntos
Boro , Prolina , Boro/química , Compostos de Boro , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química
4.
Chemistry ; 27(16): 5246-5258, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33370464

RESUMO

A new family of boron(III) chelates is introduced whereby molecular chirality, confirmed by circular dichroism, is imported during synthesis such that isolation of the diastereoisomers does not require separation procedures. The photophysical properties of two members of the family have been examined: the N,O,O-salicylaldehyde-based derivative shows pronounced intramolecular charge-transfer character in fluid solution and is weakly fluorescent, with a large Stokes shift. The corresponding 2-methylamino-benzaldehyde-derived N,N,O-chelate absorbs and fluoresces in the visible region with a much smaller Stokes shift. Orange fluorescence is also observed for this compound as a cast film. Temperature-dependence studies show that decay of the fluorescent state is weakly activated but emission is less than quantitative at 77 K. Quite rare for boron(III)-based chelates, this derivative undergoes intersystem crossing to form a meta-stable triplet-excited state. X-ray crystal structures are reported for both compounds, along with simulated ECD spectra.

5.
J Phys Chem A ; 125(5): 1184-1197, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33529035

RESUMO

A covalently linked bichromophore, embracing 6,13-bis(triisopropylsilylethinyl)pentacene (TIPS-pentacene) terminals bridged by a rigid fluorene spacer, generates a relatively high yield (i.e., 65 ± 6%) of the spin-correlated, triplet biexciton upon illumination in toluene. Under the same conditions, the extent of fluorescence quenching relative to the parent TIPS-pentacene approaches 97% and is insensitive to temperature. The biexciton, having overall singlet spin multiplicity, undergoes internal conversion in competition to spin decorrelation. These latter processes occur on the relatively slow time scale of a hundred or so nanoseconds, possibly reflecting the restricted level of electronic communication between the terminals. Spin decorrelation leads to evolution of an independent triplet pair with an overall quantum yield of 0.50 ± 0.06 and a lifetime of 8 ± 2 µs in deaerated toluene. Photoacoustic calorimetry (PAC) indicates three separate enthalpy changes: a very fast step associated with intramolecular singlet exciton fission to form the correlated triplet biexciton, a fast step essentially reflecting spin decorrelation, and a slow step associated with relaxation of the independent triplet pair. Analysis of the PAC data, in conjunction with the transient absorption results, establishes excitation energies for both spin-correlated and independent triplet pairs. Polar solvent enhances both fluorescence quenching and triplet formation at the expense of radiationless decay while temperature effects have been recorded for all important intermediate species.

6.
Angew Chem Int Ed Engl ; 60(12): 6518-6525, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33350554

RESUMO

The optical and electrochemical properties of a series of polyoxometalate (POM) oxoclusters decorated with two bodipy (boron-dipyrromethene) light-harvesting units were examined. Evaluated here in this polyanionic donor-acceptor system is the effect of the solvent and associated counterions on the intramolecular photoinduced electron transfer. The results show that both solvents and counterions have a major impact upon the energy of the charge-transfer state by modifying the solvation shell around the POMs. This modification leads to a significantly shorter charge separation time in the case of smaller counterion and slower charge recombination in a less polar solvent. These results were rationalized in terms of Marcus theory and show that solvent and counterion both affect the driving force for photoinduced electron transfer and the reorganization energy. This was corroborated with theoretical investigations combining DFT and molecular dynamics simulations.

7.
Inorg Chem ; 59(3): 1611-1621, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31940179

RESUMO

We report a comparison between a series of zinc and tin porphyrins as photosensitizers for photochemical hydrogen evolution using cobaloxime complexes as molecular catalysts. Among all the chromophores tested, only the positively charged zinc porphyrin, [ZnTMePyP4+]Cl4, and the neutral tin porphyrin derivatives, Sn(OH)2TPyP, Sn(Cl2)TPP-[COOMe]4, and Sn(Cl2)TPP-[PO(OEt)2]4, were photocatalytically active. Hydrogen evolution was strongly affected by the pH value as well as the different concentrations of both the sensitizer and the catalyst. A comprehensive photophysical and electrochemical investigation was conducted in order to examine the mechanism of photocatalysis. The results derived from this study establish fundamental criteria with respect to the design and synthesis of porphyrin derivatives for their application as photosensitizers in photoinduced hydrogen evolution.

8.
Chemistry ; 25(65): 14983-14998, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31515919

RESUMO

Cyanine dyes, as used in super-resolution fluorescence microscopy, undergo light-induced "blinking", enabling localization of fluorophores with spatial resolution beyond the optical diffraction limit. Despite a plethora of studies, the molecular origins of this blinking are not well understood. Here, we examine the photophysical properties of a bio-conjugate cyanine dye (AF-647), used extensively in dSTORM imaging. In the absence of a potent sacrificial reductant, light-induced electron transfer and intermediates formed via the metastable, triplet excited state are considered unlikely to play a significant role in the blinking events. Instead, it is found that, under conditions appropriate to dSTORM microscopy, AF-647 undergoes reversible photo-induced isomerization to at least two long-lived dark species. These photo-isomers are characterized spectroscopically and their interconversion probed by computational means. The first-formed isomer is light sensitive and transforms to a longer-lived species in modest yield that could be involved in dSTORM related blinking. Permanent photobleaching of AF-647 occurs with very low quantum yield and is partially suppressed by the anaerobic redox buffer.

9.
Photochem Photobiol Sci ; 17(1): 99-106, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29218343

RESUMO

Most quantitative fluorescence measurements report emission quantum yields by referring the integrated fluorescence profile to that of a well-known standard compound measured under carefully controlled conditions. This simple protocol works well provided an appropriate standard fluorophore is available and that the experimental conditions used for reference and unknown are closely comparable. Commercial fluorescence spectrophotometers tend to perform very well at wavelengths between 250 and 650 nm but are less responsive at longer wavelengths. There are no recognized emission standards for the far-red region. We now report fluorescence quantum yields for a series of commercially available cyanine dyes in methanol solution at room temperature. The compounds are selected to span the wavelength region from 600 to 850 nm, with absolute emission quantum yields being determined by thermal blooming spectrometry. Calibration of the instrument is made by reference to aluminium(iii) phthalocyanine tetrasulfonate and aza-BODIPY in methanol.

10.
J Phys Chem A ; 122(47): 9160-9170, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30408963

RESUMO

A boron dipyrromethene (BODIPY) derivative has been synthesized whereby a phenoxyl ring attached at the 3-position is bound through the oxygen atom to the boron center. This compound is structurally distorted, with the molecular surface being curved, and undergoes further geometrical perturbation at the excited singlet state level. Fluorescence is readily observed in solution at ambient temperature, with the quantum yield rising with increasing viscosity of the surrounding solvent. Dual-exponential decay kinetics are observed, corresponding to E-type delayed fluorescence. In solution, the emission yield falls with increasing temperature, but the opposite situation is found for the same compound dispersed in an amorphous sugar. These results are considered in terms of two radiationless decay channels. A viscosity-dependent avenue allows the fluorophore to function as a conventional fluorescent rotor for tracking changes in local rheology. A temperature-dependent channel leads to trapping within a new conformation, which is weakly coupled to the ground state but is able to repopulate the emitting state on a relatively slow time scale. Analysis of the experimental data allows estimation of some of the key kinetic parameters as a function of temperature.

11.
J Phys Chem A ; 121(45): 8569-8576, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29048161

RESUMO

Erythrosine, a popular food dye, undergoes fast O2-sensitive bleaching in water when subjected to visible light illumination. In dilute solution, erythrosine undergoes photobleaching via first-order kinetics, where the rate of bleaching depends critically on the rate of photon absorption and on the concentration of dissolved oxygen. Kinetic studies indicate that this inherent bleaching is augmented by self-catalysis at higher concentrations of erythrosine and on long exposure times. Under the conditions used, bleaching occurs by way of geminate attack of singlet molecular oxygen on the chromophore. Despite the complexity of the overall photobleaching process, the rate constants associated with both inherent and self-catalytic bleaching reactions follow Arrhenius-type behavior, allowing the activation parameters to be resolved. Bleaching remains reasonably efficient in the solid state, especially if the sample is damp, and provides a convenient means by which to construct a simple chemical actinometer.

12.
J Phys Chem A ; 120(16): 2537-46, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27046505

RESUMO

The optical properties are compared for two boron dipyrromethene (BODIPY) dyes that differ by virtue of the substituent at the meso-site, namely, aza-N versus C-methine atoms. Both compounds are equipped with aryl rings at the 3- and 5-positions of the dipyrrin backbone, which help to extend the degree of π-delocalization. The aza-BODIPY dye absorbs and fluoresces at much lower energy than does the conventional BODIPY dye, with red shifts of about 100 nm being observed in fluid solution, but with comparable fluorescence yield and lifetime. Hydrogen bonding donors, such as alcohols, attach to the aza-N atom and promote nonradiative decay without affecting the properties of the conventional dye. Triplet formation is ineffective in the absence of a spin-orbit coupler. Quantum chemical calculations indicate that the electronegative aza-N atom lowers the energy of the LUMO while having little effect on the corresponding HOMO energy. The resultant decrease in the HOMO-LUMO energy gap is primarily responsible for the red shift. The HOMO-LUMO energy gap is also affected by the dihedral angle subtended by the aryl rings, but this is insensitive to the geometry around the central 6-membered ring. The aza-N atom, by virtue of restricting spatial overlap between the HOMO and LUMO, decreases the energy gap between excited-singlet and -triplet states.

16.
Front Chem ; 9: 795877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004612

RESUMO

Two novel supramolecular complexes RuRe ([Ru(dceb)2(bpt)Re(CO)3Cl](PF6)) and RuPt ([Ru(dceb)2(bpt)PtI(H2O)](PF6)2) [dceb = diethyl(2,2'-bipyridine)-4,4'-dicarboxylate, bpt = 3,5-di(pyridine-2-yl)-1,2,4-triazolate] were synthesized as new catalysts for photocatalytic CO2 reduction and H2 evolution, respectively. The influence of the catalytic metal for successful catalysis in solution and on a NiO semiconductor was examined. IR-active handles in the form of carbonyl groups on the peripheral ligand on the photosensitiser were used to study the excited states populated, as well as the one-electron reduced intermediate species using infrared and UV-Vis spectroelectrochemistry, and time resolved infrared spectroscopy. Inclusion of ethyl-ester moieties led to a reduction in the LUMO energies on the peripheral bipyridine ligand, resulting in localization of the 3MLCT excited state on these peripheral ligands following excitation. RuPt generated hydrogen in solution and when immobilized on NiO in a photoelectrochemical (PEC) cell. RuRe was inactive as a CO2 reduction catalyst in solution, and produced only trace amounts of CO when the photocatalyst was immobilized on NiO in a PEC cell saturated with CO2.

18.
Front Chem ; 8: 584060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195076

RESUMO

A novel 4,4-difuoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) copolymer with diethynylbenzene has been synthesised, and its ability to act as a photosensitiser for the photocatalytic generation of hydrogen was investigated by time-resolved spectroscopic techniques spanning the ps- to ns-timescales. Both transient absorption and time-resolved infrared spectroscopy were used to probe the excited state dynamics of this photosensitising unit in a variety of solvents. These studies indicated how environmental factors can influence the photophysics of the BODIPY polymer. A homogeneous photocatalytic hydrogen evolution system has been developed using the BODIPY copolymer and cobaloxime which provides hydrogen evolution rates of 319 µmol h-1 g-1 after 24 h of visible irradiation.

19.
J Phys Chem Lett ; 9(14): 3934-3938, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29957960

RESUMO

Exposing TIPS-pentacene in deaerated benzene to ionizing radiation generates a mixture of singlet- and triplet-excited states of the solute. The singlet undergoes radiative decay without spin conversion whereas the triplet undergoes radiationless decay on the microsecond time scale. The concentration of each species was established by dosimetry. The excited-singlet state is not observed on the nanosecond-time scale for a related fluorene-bridged bis(pentacene), but the triplet is present in high concentration. Failure to detect the excited-singlet state is attributed to fast intramolecular singlet-exciton fission (iSEF) which is found to produce two triplet species. A short-lived intermediate (τT = 145 ns) is identified as the species (T_T) having both pentacene units present as triplet states. The second transient is longer lived (τT = 7.5 µs) and is assigned to the corresponding species (T_G) with a single pentacene promoted to the triplet level. Dosimetry is used to conclude that iSEF partitions overwhelmingly in favor of T_G (70%) relative to T_T (25%). The total triplet yield from iSEF, therefore, is ca. 120% in this system, where the pentacene terminals are weakly coupled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA