Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38284991

RESUMO

The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal-ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.

2.
Anal Chem ; 95(32): 11901-11907, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37540774

RESUMO

The inability to identify the structures of most metabolites detected in environmental or biological samples limits the utility of nontargeted metabolomics. The most widely used analytical approaches combine mass spectrometry and machine learning methods to rank candidate structures contained in large chemical databases. Given the large chemical space typically searched, the use of additional orthogonal data may improve the identification rates and reliability. Here, we present results of combining experimental and computational mass and IR spectral data for high-throughput nontargeted chemical structure identification. Experimental MS/MS and gas-phase IR data for 148 test compounds were obtained from NIST. Candidate structures for each of the test compounds were obtained from PubChem (mean = 4444 candidate structures per test compound). Our workflow used CSI:FingerID to initially score and rank the candidate structures. The top 1000 ranked candidates were subsequently used for IR spectra prediction, scoring, and ranking using density functional theory (DFT-IR). Final ranking of the candidates was based on a composite score calculated as the average of the CSI:FingerID and DFT-IR rankings. This approach resulted in the correct identification of 88 of the 148 test compounds (59%). 129 of the 148 test compounds (87%) were ranked within the top 20 candidates. These identification rates are the highest yet reported when candidate structures are used from PubChem. Combining experimental and computational MS/MS and IR spectral data is a potentially powerful option for prioritizing candidates for final structure verification.


Assuntos
Bases de Dados de Compostos Químicos , Espectrometria de Massas em Tandem , Reprodutibilidade dos Testes , Metabolômica/métodos , Aprendizado de Máquina
3.
Anal Chem ; 93(30): 10688-10696, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34288660

RESUMO

The high-throughput identification of unknown metabolites in biological samples remains challenging. Most current non-targeted metabolomics studies rely on mass spectrometry, followed by computational methods that rank thousands of candidate structures based on how closely their predicted mass spectra match the experimental mass spectrum of an unknown. We reasoned that the infrared (IR) spectra could be used in an analogous manner and could add orthologous structure discrimination; however, this has never been evaluated on large data sets. Here, we present results of a high-throughput computational method for predicting IR spectra of candidate compounds obtained from the PubChem database. Predicted spectra were ranked based on their similarity to gas-phase experimental IR spectra of test compounds obtained from the NIST. Our computational workflow (IRdentify) consists of a fast semiempirical quantum mechanical method for initial IR spectra prediction, ranking, and triaging, followed by a final IR spectra prediction and ranking using density functional theory. This approach resulted in the correct identification of 47% of 258 test compounds. On average, there were 2152 candidate structures evaluated for each test compound, giving a total of approximately 555,200 candidate structures evaluated. We discuss several variables that influenced the identification accuracy and then demonstrate the potential application of this approach in three areas: (1) combining IR and mass spectra rankings into a single composite rank score, (2) identifying the precursor and fragment ions using cryogenic ion vibrational spectroscopy, and (3) the incorporation of a trimethylsilyl derivatization step to extend the method compatibility to less-volatile compounds. Overall, our results suggest that matching computational with experimental IR spectra is a potentially powerful orthogonal option for adding significant high-throughput chemical structure discrimination when used with other non-targeted chemical structure identification methods.


Assuntos
Metabolômica , Bases de Dados Factuais , Íons , Espectrometria de Massas
4.
J Am Chem Soc ; 138(18): 5904-15, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27127896

RESUMO

One of the greatest challenges with single-walled carbon nanotube (SWNT) photovoltaics and nanostructured devices is maintaining the nanotubes in their pristine state (i.e., devoid of aggregation and inhomogeneous doping) so that their unique spectroscopic and transport characteristics are preserved. To this effect, we report on the synthesis and self-assembly of a C60-functionalized flavin (FC60), composed of PCBM and isoalloxazine moieties attached on either ends of a linear, C-12 aliphatic spacer. Small amounts of FC60 (up to 3 molar %) were shown to coassembly with an organic soluble derivative of flavin (FC12) around SWNTs and impart effective dispersion and individualization. A key annealing step was necessary to perfect the isoalloxazine helix and expel the C60 moiety away from the nanotubes. Steady-state and transient absorption spectroscopy illustrate that 1% or higher incorporation of FC60 allows for an effective photoinduced charge transfer quenching of the encased SWNTs through the seamless helical encase. This is enabled via the direct π-π overlap between the graphene sidewalls, isoalloxazine helix, and the C60 cage that facilitates SWNT exciton dissociation and electron transfer to the PCBM moiety. Atomistic molecular simulations indicate that the stability of the complex originates from enhanced van der Waals interactions of the flexible spacer wrapped around the fullerene that brings the C60 in π-π overlap with the isoalloxazine helix. The remarkable spectral purity (in terms of narrow E(S)ii line widths) for the resulting ground-state complex signals a new class of highly organized supramolecular nanotube architecture with profound importance for advanced nanostructured devices.


Assuntos
Flavinas/química , Fulerenos/química , Nanotubos de Carbono/química , Simulação por Computador , Grafite/química , Indicadores e Reagentes , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA