Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Urologiia ; (6): 67-73, 2019 12 31.
Artigo em Russo | MEDLINE | ID: mdl-32003170

RESUMO

AIM: of the study: demonstrate the feasibility of non-invasive mechanical disintegration of human prostate tissue using pulsed high-intensity focused ultrasound (pHIFU), a method termed boiling histotripsy. MATERIALS AND METHODS: An ultrasound experimental system was developed for producing localized mechanical lesions in ex vivo biological tissue samples under ultrasound guidance. A series of experiments was carried out to create small single-focus lesions (volume < 2 mm3) and one large lesion (volume > 50 mm3) in ex vivo prostate tissue samples. After irradiation, two samples were bisected to visualize the region of destruction; the other tissue samples were examined histologically. RESULTS: During pHIFU irradiation under B-mode ultrasound guidance, a region of increased echogenicity caused by formation of vapor-gas bubbles was visualized in the target region. After exposure, small and large lesions filled with a suspension of liquefied tissue were observed. Histological examination confirmed that the prostate tissue in the focal region was disintegrated into subcellular fragments. CONCLUSION: A pilot study showed the feasibility of using boiling histotripsy as a non-invasive method for treating prostate diseases.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias da Próstata , Humanos , Masculino , Projetos Piloto , Neoplasias da Próstata/terapia , Ultrassonografia
2.
Ultrasonics ; 133: 107029, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37207594

RESUMO

Focused ultrasound technologies are of growing interest for noninvasive ablation of localized prostate cancer (PCa). Here we present the results of the first case study evaluating the feasibility of non-thermal mechanical ablation of human prostate adenocarcinoma tissue using the boiling histotripsy (BH) method on ex vivo tissue. High intensity focused ultrasound field was generated using a 1.5-MHz custom-made transducer with nominal F#=0.75. A sonication protocol of 734 W acoustic power, 10-ms long BH-pulses, 30 pulses per focal spot, 1 % duty cycle, and 1 mm distance between single foci was tested in an ex vivo human prostate tissue sample containing PCa. The protocol used here has been successfully applied in the previous BH studies for mechanical disintegration of ex vivo prostatic human tissue with benign hyperplasia. BH treatment was monitored using B-mode ultrasound. Post-treatment histologic analysis demonstrated BH produced liquefaction of the targeted tissue volume. BH treated benign prostate parenchyma and PCa had similar tissue fractionation into subcellular fragments. The results of the study demonstrated that PCa tumor tissue can be mechanically ablated using the BH method. Further studies will aim on optimizing protocol parameters to accelerate treatment while maintaining complete destruction of the targeted tissue volume into subcellular debris.


Assuntos
Adenocarcinoma , Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias da Próstata , Masculino , Humanos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Próstata/diagnóstico por imagem , Próstata/cirurgia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Ultrassonografia , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/cirurgia
3.
AIP Conf Proc ; 16852015.
Artigo em Inglês | MEDLINE | ID: mdl-27087711

RESUMO

Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher transducer output to provide stronger pushing force; however, nonlinear acoustic saturation effect can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match low power pressure beam scans. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA