Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 42(3): 552-65, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25786178

RESUMO

The inducible T cell costimulator (ICOS) is a potent promoter of organ inflammation in murine lupus. ICOS stimulates T follicular helper cell differentiation in lymphoid tissue, suggesting that it might drive autoimmunity by enhancing autoantibody production. Yet the pathogenic relevance of this mechanism remains unclear. It is also unknown whether other ICOS-induced processes might contribute to lupus pathology. Here we show that selective ablation of ICOS ligand (ICOSL) in CD11c(+) cells, but not in B cells, dramatically ameliorates kidney and lung inflammation in lupus-prone MRL.Fas(lpr) mice. Autoantibody formation was largely unaffected by ICOSL deficiency in CD11c(+) cells. However, ICOSL display by CD11c(+) cells in inflamed organs had a nonredundant role in protecting invading T cells from apoptosis by elevating activity of the PI3K-Akt signaling pathway, thereby facilitating T cell accrual. These findings reveal a mechanism that locally sustains organ inflammation in lupus.


Assuntos
Antígeno CD11c/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Rim/imunologia , Nefrite Lúpica/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Apoptose , Autoanticorpos/biossíntese , Antígeno CD11c/genética , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/deficiência , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Rim/patologia , Pulmão/imunologia , Pulmão/patologia , Nefrite Lúpica/genética , Nefrite Lúpica/patologia , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/patologia
2.
Immunity ; 38(3): 528-40, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23499488

RESUMO

Detection of self nucleic acids by Toll-like receptors (TLR) preciptates autoimmune diseases, including systemic lupus erythematosus (SLE). It remains unknown how TLR signals in specific cell types contribute to distinct manifestations of SLE. Here, we demonstrate that formation of anti-nuclear antibodies in MRL.Fas(lpr) mice entirely depends on the TLR signaling adaptor MyD88 in B cells. Further, MyD88 deficiency in B cells ameliorated nephritis, including antibody-independent interstitial T cell infiltrates, suggesting that nucleic acid-specific B cells activate nephrotoxic T cells. Surprisingly, MyD88 deletion in dendritic cells (DCs) did not affect nephritis, despite the importance of DCs in renal inflammation. In contrast, MyD88 in DCs was critical for dermatitis, revealing a separate pathogenetic mechanism. DC-expressed MyD88 promoted interferon-α production by plasmacytoid DCs, which was associated with Death domain-associated protein 6 upregulation and B lymphopenia. Our findings thus reveal unique immunopathological consequences of MyD88 signaling in B cells and DCs in lupus.


Assuntos
Linfócitos B/imunologia , Células Dendríticas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/imunologia , Animais , Anticorpos Antinucleares/sangue , Anticorpos Antinucleares/imunologia , Autoimunidade/genética , Autoimunidade/imunologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Células Th1/imunologia , Células Th1/metabolismo
3.
Nephrol Dial Transplant ; 37(11): 2214-2222, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34865148

RESUMO

BACKGROUND: Patients with acute interstitial nephritis (AIN) can present without typical clinical features, leading to a delay in diagnosis and treatment. We therefore developed and validated a diagnostic model to identify patients at risk of AIN using variables from the electronic health record. METHODS: In patients who underwent a kidney biopsy at Yale University between 2013 and 2018, we tested the association of >150 variables with AIN, including demographics, comorbidities, vital signs and laboratory tests (training set 70%). We used least absolute shrinkage and selection operator methodology to select prebiopsy features associated with AIN. We performed area under the receiver operating characteristics curve (AUC) analysis with internal (held-out test set 30%) and external validation (Biopsy Biobank Cohort of Indiana). We tested the change in model performance after the addition of urine biomarkers in the Yale AIN study. RESULTS: We included 393 patients (AIN 22%) in the training set, 158 patients (AIN 27%) in the test set, 1118 patients (AIN 11%) in the validation set and 265 patients (AIN 11%) in the Yale AIN study. Variables in the selected model included serum creatinine {adjusted odds ratio [aOR] 2.31 [95% confidence interval (CI) 1.42-3.76]}, blood urea nitrogen:creatinine ratio [aOR 0.40 (95% CI 0.20-0.78)] and urine dipstick specific gravity [aOR 0.95 (95% CI 0.91-0.99)] and protein [aOR 0.39 (95% CI 0.23-0.68)]. This model showed an AUC of 0.73 (95% CI 0.64-0.81) in the test set, which was similar to the AUC in the external validation cohort [0.74 (95% CI 0.69-0.79)]. The AUC improved to 0.84 (95% CI 0.76-0.91) upon the addition of urine interleukin-9 and tumor necrosis factor-α. CONCLUSIONS: We developed and validated a statistical model that showed a modest AUC for AIN diagnosis, which improved upon the addition of urine biomarkers. Future studies could evaluate this model and biomarkers to identify unrecognized cases of AIN.


Assuntos
Interleucina-9 , Nefrite Intersticial , Humanos , Creatinina , Interleucina-9/uso terapêutico , Registros Eletrônicos de Saúde , Fator de Necrose Tumoral alfa , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/epidemiologia , Nefrite Intersticial/tratamento farmacológico , Biópsia , Biomarcadores/análise
4.
Nephrol Dial Transplant ; 36(10): 1851-1858, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33125471

RESUMO

BACKGROUND: We previously demonstrated that urine interleukin (IL)-9 and tumor necrosis factor (TNF)-α can distinguish acute interstitial nephritis (AIN) from other causes of acute kidney injury. Here we evaluated the role of these biomarkers to prognosticate kidney function in patients with AIN. METHODS: In a cohort of participants with biopsy-proven, adjudicated AIN, we tested the association of histological features and urine biomarkers (IL-9 and TNF-α) with estimated glomerular filtration rate measured 6 months after diagnosis (6 m-eGFR) controlling for eGFR before AIN and albuminuria. We also evaluated subgroups in whom corticosteroid use was associated with 6 m-eGFR. RESULTS: In the 51 (93%) of the 55 participants with complete data, median (interquartile range) eGFR before and 6 m after AIN were 41 (27-69) and 28 (13-47) mL/min/1.73 m2, respectively. Patients with higher severity of interstitial fibrosis had lower 6 m-eGFR, whereas those with higher tubulointerstitial infiltrate had higher 6 m-eGFR. IL-9 levels were associated with lower 6 m-eGFR only in the subset of patients who did not receive corticosteroids [6m-eGFR per doubling of IL-9, -6.0 (-9.4 to -2.6) mL/min/1.73 m2]. Corticosteroid use was associated with higher 6 m-eGFR [20.9 (0.2, 41.6) mL/min/1.73 m2] only in those with urine IL-9 above the median (>0.66 ng/g) but not in others. CONCLUSIONS: Urine IL-9 was associated with lower 6 m-eGFR only in participants not treated with corticosteroids. Corticosteroid use was associated with higher 6 m-eGFR in those with high urine IL-9. These findings provide a framework for IL-9-guided clinical trials to test efficacy of immunosuppressive therapy in patients with AIN.


Assuntos
Interleucina-9/urina , Nefrite Intersticial , Fator de Necrose Tumoral alfa , Taxa de Filtração Glomerular , Humanos , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/tratamento farmacológico , Prognóstico , Fator de Necrose Tumoral alfa/urina
5.
Immunity ; 33(6): 967-78, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21167752

RESUMO

Dendritic cells (DCs) initiate and control the adaptive immune response against infections. However, their contributions to the anti-self adaptive immune response in autoimmune disorders like systemic lupus erythematosus are uncertain. By constitutively deleting DCs in MRL.Fas(lpr) mice, we show that they have complex roles in murine lupus. The net effect of DC deletion was to ameliorate disease. DCs were crucial for the expansion and differentiation of T cells but, surprisingly, not required for their initial activation. Correspondingly, kidney interstitial infiltrates developed in the absence of DCs, but failed to progress. DC deletion concomitantly decreased inflammatory and regulatory T cell numbers. Unexpectedly, plasmablast numbers and autoantibody concentrations depended on DCs, in contrast to total serum immunoglobulin concentrations, suggesting an effect of DCs on extrafollicular humoral responses. These findings reveal that DCs operate in unanticipated ways in murine lupus and validate them as a potential therapeutic target in autoimmunity.


Assuntos
Linfócitos B/metabolismo , Células Dendríticas/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Autoanticorpos/biossíntese , Autoanticorpos/genética , Linfócitos B/imunologia , Linfócitos B/patologia , Remoção de Componentes Sanguíneos , Diferenciação Celular , Movimento Celular , Células Dendríticas/imunologia , Células Dendríticas/patologia , Modelos Animais de Doenças , Humanos , Switching de Imunoglobulina , Interferon gama/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
6.
J Immunol ; 198(7): 2578-2588, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28219887

RESUMO

Systemic lupus erythematosus (lupus) is characterized by autoantibody-mediated organ injury. Follicular Th (Tfh) cells orchestrate physiological germinal center (GC) B cell responses, whereas in lupus they promote aberrant GC responses with autoreactive memory B cell development and plasma cell-derived autoantibody production. IL-21, a Tfh cell-derived cytokine, provides instructional cues for GC B cell maturation, with disruption of IL-21 signaling representing a potential therapeutic strategy for autoantibody-driven diseases such as systemic lupus erythematosus. We used blockade of IL-21 to dissect the mechanisms by which this cytokine promotes autoimmunity in murine lupus. Treatment of lupus-prone B6.Sle1.Yaa mice with an anti-IL-21 blocking Ab reduced titers of autoantibodies, delayed progression of glomerulonephritis and diminished renal-infiltrating Tfh and Th1 cells, and improved overall survival. Therapy inhibited excessive accumulation of Tfh cells coexpressing IL-21 and IFN-γ, and suppressed their production of the latter cytokine, albeit while not affecting their frequency. Anti-IL-21 treatment also led to a reduction in GC B cells, CD138hi plasmablasts, IFN-γ-dependent IgG2c production, and autoantibodies, indicating that Tfh cell-derived IL-21 is critical for pathological B cell cues in lupus. Normalization of GC responses was, in part, caused by uncoupling of Tfh-B cell interactions, as evidenced by reduced expression of CD40L on Tfh cells and reduced B cell proliferation in treated mice. Our work provides mechanistic insight into the contribution of IL-21 to the pathogenesis of murine lupus, while revealing the importance of T-B cellular cross-talk in mediating autoimmunity, demonstrating that its interruption impacts both cell types leading to disease amelioration.


Assuntos
Linfócitos B/imunologia , Interleucinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptor Cross-Talk/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoimunidade/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Masculino , Camundongos , Camundongos Mutantes
7.
Proc Natl Acad Sci U S A ; 112(31): 9686-91, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195760

RESUMO

Complement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB-inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3. Informed by a genome-wide siRNA screen, instead this response required internalization of MACs in a clathrin-, AP2-, and dynamin-dependent manner into Rab5(+)endosomes, which recruited activated Akt, stabilized NIK, and led to phosphorylation of IκB kinase (IKK)-α. Active Rab5 was required for recruitment of activated Akt to MAC(+) endosomes, but not for MAC internalization or for Akt activation. Consistent with these in vitro observations, MAC internalization occurred in human coronary ECs in vivo and was similarly required for NIK stabilization and EC activation. We conclude that MACs activate noncanonical NF-κB by forming a novel Akt(+)NIK(+) signalosome on Rab5(+) endosomes.


Assuntos
Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Endossomos/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Proteína 3 com Repetições IAP de Baculovírus , Clatrina/metabolismo , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hidrazonas/farmacologia , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos SCID , Biossíntese de Proteínas/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 3 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Quinase Induzida por NF-kappaB
8.
J Immunol ; 195(6): 2571-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26268653

RESUMO

B cells have both Ab-dependent and Ab-independent functions in systemic autoimmune diseases, including systemic lupus erythematosus (SLE). Ab-independent functions are known to be important, because mice with B cells but no secreted Ig have severe disease. These functions could include roles in lymphoid development, cytokine secretion, and Ag presentation; however, these possibilities have not been directly tested in SLE models. In this study, we show by lineage-specific ablation of MHC class II (MHCII) that B cell Ag presentation plays a nonredundant role in CD4(+) T cell activation and effector differentiation in the MRL.Fas(lpr) mouse model of SLE. MHCII-mediated interactions between B and T cells further promote B cell proliferation and differentiation, and, in fact, inefficient MHCII deletion on B cells led to strong selection of escaped cells in activated and plasmablast compartments, further underscoring the central role of B cell Ag presentation. Despite the leakiness in the system, B cell-specific MHCII deletion resulted in substantially ameliorated clinical disease. Hence, B cell Ag presentation is critical for T and B cell activation and differentiation, as well as target organ damage.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Genes MHC da Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Lúpus Eritematoso Sistêmico/imunologia , Animais , Autoanticorpos/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/genética , Citocinas/metabolismo , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Nefrite Lúpica/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos
9.
J Am Soc Nephrol ; 26(11): 2765-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25788531

RESUMO

Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na(+),K(+)-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na(+),K(+)-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na(+),K(+)-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na(+),K(+)-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion-induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na(+),K(+)-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na(+),K(+)-ATPase to the energy state of renal epithelial cells.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Isquemia/patologia , Rim/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Biotinilação , Linhagem Celular , Citoplasma/metabolismo , Cães , Dinaminas/metabolismo , Endocitose , Células Epiteliais/citologia , Humanos , Rim/lesões , Nefropatias/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Fosforilação , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Traumatismo por Reperfusão , Transdução de Sinais
10.
J Immunol ; 190(8): 3889-94, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23467932

RESUMO

TLR9 suppresses TLR7-driven pathogenesis in the MRL.Fas(lpr) murine model of systemic lupus erythematosus, but the mechanisms by which TLR7 promotes and TLR9 prevents disease in this and other lupus models remain unclear. Type I IFNs (IFN-I) have also been implicated in the pathogenesis of lupus both in patients and in several murine models of disease, but their role in MRL.Fas(lpr) mice is controversial. Using MRL.Fas(lpr) mice genetically deficient in a subunit of the receptor for IFN-I, Ifnar1, we show that IFN-I contribute significantly to renal disease in this model. Ifnar1 had no effect on anti-nucleosome or anti-Sm autoantibody titers, but instead regulated anticytoplasmic and anti-RNA specificities. Moreover, Ifnar1 deficiency prevented the exacerbation of clinical disease observed in Tlr9-deficient animals in this lupus model. Thus, IFN-I signaling is an important mediator of lupus pathogenesis and anti-RNA Ab production that is dysregulated in the absence of Tlr9.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Receptor de Interferon alfa e beta/fisiologia , Receptor Toll-Like 9/deficiência , Animais , Doenças Autoimunes/prevenção & controle , Modelos Animais de Doenças , Feminino , Células Hep G2 , Humanos , Lúpus Eritematoso Sistêmico/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Camundongos Transgênicos , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptor Toll-Like 9/genética
11.
J Am Soc Nephrol ; 25(8): 1814-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24578128

RESUMO

VEGF-A and nitric oxide are essential for glomerular filtration barrier homeostasis and are dysregulated in diabetic nephropathy. Here, we examined the effect of excess podocyte VEGF-A on the renal phenotype of endothelial nitric oxide synthase (eNOS) knockout mice. Podocyte-specific VEGF(164) gain of function in eNOS(-/-) mice resulted in nodular glomerulosclerosis, mesangiolysis, microaneurysms, and arteriolar hyalinosis associated with massive proteinuria and renal failure in the absence of diabetic milieu or hypertension. In contrast, podocyte-specific VEGF(164) gain of function in wild-type mice resulted in less pronounced albuminuria and increased creatinine clearance. Transmission electron microscopy revealed glomerular basement membrane thickening and podocyte effacement in eNOS(-/-) mice with podocyte-specific VEGF(164) gain of function. Furthermore, glomerular nodules overexpressed collagen IV and laminin extensively. Biotin-switch and proximity ligation assays demonstrated that podocyte-specific VEGF(164) gain of function decreased glomerular S-nitrosylation of laminin in eNOS(-/-) mice. In addition, treatment with VEGF-A decreased S-nitrosylated laminin in cultured podocytes. Collectively, these data indicate that excess glomerular VEGF-A and eNOS deficiency is necessary and sufficient to induce Kimmelstiel-Wilson-like nodular glomerulosclerosis in mice through a process that involves deposition of laminin and collagen IV and de-nitrosylation of laminin.


Assuntos
Nefropatias Diabéticas/etiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Podócitos/metabolismo , Proteinúria/etiologia , Insuficiência Renal/etiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Técnicas de Cultura de Células , Colágeno Tipo IV/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Membrana Basal Glomerular/metabolismo , Membrana Basal Glomerular/patologia , Laminina/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética , Proteinúria/metabolismo , Proteinúria/patologia , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia
12.
J Immunol ; 188(2): 678-85, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22156495

RESUMO

B cells contribute to the pathogenesis of chronic autoimmune disorders, like systemic lupus erythematosus (SLE), via multiple effector functions. However, B cells are also implicated in regulating SLE and other autoimmune syndromes via release of IL-10. B cells secreting IL-10 were termed "Bregs" and were proposed as a separate subset of cells, a concept that remains controversial. The balance between pro- and anti-inflammatory effects could determine the success of B cell-targeted therapies for autoimmune disorders; therefore, it is pivotal to understand the significance of B cell-secreted IL-10 in spontaneous autoimmunity. By lineage-specific deletion of Il10 from B cells, we demonstrated that B cell-derived IL-10 is ineffective in suppressing the spontaneous activation of self-reactive B and T cells during lupus. Correspondingly, severity of organ disease and survival rates in mice harboring Il10-deficient B cells are unaltered. Genetic marking of cells that transcribe Il10 illustrated that the pool of IL-10-competent cells is dominated by CD4 T cells and macrophages. IL-10-competent cells of the B lineage are rare in vivo and, among them, short-lived plasmablasts have the highest frequency, suggesting an activation-driven, rather than lineage-driven, phenotype. Putative Breg phenotypic subsets, such as CD1d(hi)CD5(+) and CD21(hi)CD23(hi) B cells, are not enriched in Il10 transcription. These genetic studies demonstrated that, in a spontaneous model of murine lupus, IL-10-dependent B cell regulation does not restrain disease and, thus, the pathogenic effects of B cells are not detectably counterbalanced by their IL-10-dependent regulatory functions.


Assuntos
Doenças Autoimunes/imunologia , Subpopulações de Linfócitos B/imunologia , Interleucina-10/fisiologia , Camundongos Endogâmicos MRL lpr/imunologia , Animais , Doenças Autoimunes/genética , Subpopulações de Linfócitos B/metabolismo , Doença Crônica , Interleucina-10/deficiência , Interleucina-10/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr/genética , Camundongos Knockout , Camundongos Transgênicos , Especificidade da Espécie , Síndrome , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptor fas/biossíntese
13.
JCI Insight ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042716

RESUMO

Loss of NADPH oxidase (NOX2) exacerbates systemic lupus erythematosus (SLE) in mice and humans, but the mechanisms underlying this effect remain unclear. To identify the cell lineages in which NOX2 deficiency drives SLE, we employed conditional knockout (KO) and chimera approaches to delete Cybb in several hematopoietic cell lineages of MRL.Faslpr lupus-prone mice. Deletion of Cybb in macrophages/monocytes exacerbated lupus nephritis, though not to the degree observed in the Cybb global KOs. Unexpectedly, the absence of Cybb in B cells resulted in profound glomerulonephritis and interstitial nephritis, rivaling that seen with global deletion. Further, we identified that NOX2 is a key regulator of TLR7, a driver of SLE pathology, both globally and specifically in B cells. This is mediated in part through suppression of TLR7-mediated NF-kB signaling in B cells. Thus, NOX2's immunomodulatory effect in SLE is orchestrated not only by its function in the myeloid compartment, but through a pivotal role in B cells by selectively inhibiting TLR7 signaling.

14.
J Immunol ; 186(1): 527-38, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21106847

RESUMO

Autoimmunity leads to the activation of innate effector pathways, proinflammatory cytokine production, and end-organ injury. Macrophage migration inhibitory factor (MIF) is an upstream activator of the innate response that mediates the recruitment and retention of monocytes via CD74 and associated chemokine receptors, and it has a role in the maintenance of B lymphocytes. High-expression MIF alleles also are associated with end-organ damage in different autoimmune diseases. We assessed the therapeutic efficacy of (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), an orally bioavailable MIF antagonist, in two distinct models of systemic lupus erythematosus: the NZB/NZW F1 and the MRL/lpr mouse strains. ISO-1, like anti-MIF, inhibited the interaction between MIF and its receptor, CD74, and in each model of disease, it reduced functional and histological indices of glomerulonephritis, CD74(+) and CXCR4(+) leukocyte recruitment, and proinflammatory cytokine and chemokine expression. Neither autoantibody production nor T and B cell activation were significantly affected, pointing to the specificity of MIF antagonism in reducing excessive proinflammatory responses. These data highlight the feasibility of targeting the MIF-MIF receptor interaction by small-molecule antagonism and support the therapeutic value of downregulating MIF-dependent pathways of tissue damage in systemic lupus erythematosus.


Assuntos
Predisposição Genética para Doença , Glomerulonefrite/prevenção & controle , Oxirredutases Intramoleculares/antagonistas & inibidores , Isoxazóis/uso terapêutico , Lúpus Eritematoso Sistêmico/prevenção & controle , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Inibição de Migração Celular/efeitos dos fármacos , Inibição de Migração Celular/imunologia , Feminino , Perfilação da Expressão Gênica , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Humanos , Oxirredutases Intramoleculares/biossíntese , Isoxazóis/administração & dosagem , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Fatores Inibidores da Migração de Macrófagos/biossíntese , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NZB , Camundongos Knockout , Dados de Sequência Molecular , Distribuição Aleatória , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/biossíntese
15.
J Am Soc Nephrol ; 23(3): 429-37, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22193389

RESUMO

Renal tubular atrophy accompanies many proteinuric renal diseases, suggesting that glomerular proteinuria injures the tubules. However, local or systemic inflammation and filtration of abnormal proteins known to directly injure tubules are also present in many of these diseases and animal models; therefore, whether glomerular proteinuria directly causes tubular injury is unknown. Here, we examined the renal response to proteinuria induced by selective podocyte loss. We generated mice that express the diphtheria toxin receptor exclusively in podocytes, allowing reproducible dose-dependent, specific ablation of podocytes by administering diphtheria toxin. Ablation of <20% of podocytes resulted in profound albuminuria that resolved over 1-2 weeks after the re-establishment of normal podocyte morphology. Immediately after the onset of albuminuria, proximal tubule cells underwent a transient burst of proliferation without evidence of tubular damage or increased apoptosis, resulting in an increase in total tubular cell numbers. The proliferative response coincided with detection of the growth factor Gas6 in the urine and phosphorylation of the Gas6 receptor Axl in the apical membrane of renal tubular cells. In contrast, ablation of >40% of podocytes led to progressive glomerulosclerosis, profound tubular injury, and renal failure. These data suggest that glomerular proteinuria in the absence of severe structural glomerular injury activates tubular proliferation, potentially as an adaptive response to minimize the loss of filtered proteins.


Assuntos
Albuminúria/fisiopatologia , Proliferação de Células , Glomérulos Renais/fisiopatologia , Túbulos Renais Proximais/patologia , Podócitos/patologia , Proteinúria/fisiopatologia , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Modelos Animais de Doenças , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Integrases/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteinúria/metabolismo , Proteinúria/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tirosina Quinase Axl
16.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395276

RESUMO

BackgroundAcute tubulointerstitial nephritis (AIN) is one of the few causes of acute kidney injury with diagnosis-specific treatment options. However, due to the need to obtain a kidney biopsy for histological confirmation, AIN diagnosis can be delayed, missed, or incorrectly assumed. Here, we identify and validate urinary CXCL9, an IFN-γ-induced chemokine involved in lymphocyte chemotaxis, as a diagnostic biomarker for AIN.MethodsIn a prospectively enrolled cohort with pathologist-adjudicated histological diagnoses, termed the discovery cohort, we tested the association of 180 immune proteins measured by an aptamer-based assay with AIN and validated the top protein, CXCL9, using sandwich immunoassay. We externally validated these findings in 2 cohorts with biopsy-confirmed diagnoses, termed the validation cohorts, and examined mRNA expression differences in kidney tissue from patients with AIN and individuals in the control group.ResultsIn aptamer-based assay, urinary CXCL9 was 7.6-fold higher in patients with AIN than in individuals in the control group (P = 1.23 × 10-5). Urinary CXCL9 measured by sandwich immunoassay was associated with AIN in the discovery cohort (n = 204; 15% AIN) independently of currently available clinical tests for AIN (adjusted odds ratio for highest versus lowest quartile: 6.0 [1.8-20]). Similar findings were noted in external validation cohorts, where CXCL9 had an AUC of 0.94 (0.86-1.00) for AIN diagnosis. CXCL9 mRNA expression was 3.9-fold higher in kidney tissue from patients with AIN (n = 19) compared with individuals in the control group (n = 52; P = 5.8 × 10-6).ConclusionWe identified CXCL9 as a diagnostic biomarker for AIN using aptamer-based urine proteomics, confirmed this association using sandwich immunoassays in discovery and external validation cohorts, and observed higher expression of this protein in kidney biopsies from patients with AIN.FundingThis study was supported by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) awards K23DK117065 (DGM), K08DK113281 (KM), R01DK128087 (DGM), R01DK126815 (DGM and LGC), R01DK126477 (KNC), UH3DK114866 (CRP, DGM, and FPW), R01DK130839 (MES), and P30DK079310 (the Yale O'Brien Center). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Assuntos
Nefrite Intersticial , Humanos , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/induzido quimicamente , Nefrite Intersticial/patologia , Rim/patologia , Biomarcadores , RNA Mensageiro , Quimiocina CXCL9/genética , Quimiocina CXCL9/efeitos adversos
17.
J Immunol ; 184(4): 1840-8, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20089701

RESUMO

Systemic lupus erythematosus is characterized by the production of autoantibodies against nucleic acid-associated Ags. We previously found that Tlr7 was required for anti-Sm and Tlr9 for anti-chromatin autoantibodies. Yet, although Tlr7 deficiency ameliorated disease, Tlr9 deficiency exacerbated it. Despite the mechanistic and clinical implications of this finding, it has yet to be elucidated. In this study, we characterize MRL/lpr lupus-prone mice genetically deficient in Tlr7, Tlr9, both Tlr7 and Tlr9, or Myd88 to test whether Tlr7 and Tlr9 function independently or instead regulate each other. We find that disease that is regulated by Tlr9 (and hence is worse in its absence) depends on Tlr7 for its manifestation. In addition, although Tlr7 and Tlr9 act in parallel pathways on different subsets of autoantibodies, Tlr9 also suppresses the production of Tlr7-dependent RNA-associated autoantibodies, suggesting previously unrecognized cross-regulation of autoantibody production as well. By comparing disease in mice deficient for Tlr7 and/or Tlr9 to those lacking Myd88, we also identify aspects of disease that have Tlr- and Myd88-independent components. These results suggest new models for how Tlr9 regulates and Tlr7 enhances disease and provide insight into aspects of autoimmune disease that are, and are not, influenced by TLR signals.


Assuntos
Anticorpos Antinucleares/biossíntese , Lúpus Eritematoso Sistêmico/imunologia , Glicoproteínas de Membrana/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Animais , Anticorpos Antinucleares/sangue , Imunidade Inata/genética , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Índice de Gravidade de Doença , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 7 Toll-Like/deficiência , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética
18.
Clin Nephrol ; 77(1): 62-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22185970

RESUMO

Associations between secondary focal segmental glomerulosclerosis and both obesity and obstructive sleep apnea have been previously described. Current theory suggests obesity induces glomerular hyperfiltration, leading to glomerulosclerosis. We describe a case of focal segmental glomerulosclerosis in the setting of severe obesity and obstructive sleep apnea with complete resolution of heavy proteinuria following treatment with bi-level positive airway pressure. The patient's proteinuria resolved completely with treatment of obstructive sleep apnea although the patient remained morbidly obese.


Assuntos
Glomerulosclerose Segmentar e Focal/complicações , Síndrome de Hipoventilação por Obesidade/terapia , Respiração com Pressão Positiva/métodos , Proteinúria/etiologia , Proteinúria/terapia , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Rim/patologia , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/complicações , Proteinúria/patologia , Resultado do Tratamento
19.
Pediatr Dermatol ; 29(6): 725-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22515571

RESUMO

Epidermolysis bullosa pruriginosa (EBP) is a rare subtype of dystrophic epidermolysis bullosa (DEB) characterized by intense pruritus, nodular or lichenoid lesions, and violaceous linear scarring, most prominently on the extensor extremities. Remarkably, identical mutations in COL7A1, which encodes an anchoring fibril protein present at the dermal-epidermal junction, can cause both DEB and EBP with either autosomal dominant or recessive inheritance. We present one family with both dystrophic and pruriginosa phenotypes of epidermolysis bullosa. The proband is a 19-year-old Caucasian woman who initially presented in childhood with lichenoid papules affecting her extensor limbs and intense pruritus consistent with EBP. Her maternal grandmother saw a dermatologist for similar skin lesions that developed without any known triggers at age 47 and mostly resolved spontaneously after approximately 10 years. The proband's younger brother developed a small crop of pruritic papules on his elbows, dorsal hands, knees, and ankles at age 13. Her second cousin once removed, however, reported a mild blistering disease without pruritus consistent with DEB. Genetic sequencing of the kindred revealed a single dominant novel intron 47 splice site donor G>A mutation, c.4668 + 1 G>A, which we predict leads to exon skipping. Incomplete penetrance is confirmed in her clinically unaffected mother, who carries the same dominant mutation. The wide diversity of clinical phenotypes with one underlying genotype demonstrates that COL7A1 mutations are incompletely penetrant and strongly suggests that other genetic and environmental factors influence clinical presentation.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa/genética , Penetrância , Epidermólise Bolhosa/patologia , Epidermólise Bolhosa Distrófica/patologia , Saúde da Família , Feminino , Genes Dominantes , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Pele/patologia , Adulto Jovem
20.
Clin J Am Soc Nephrol ; 17(9): 1284-1292, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35948365

RESUMO

BACKGROUND AND OBJECTIVES: Uromodulin, produced exclusively in the kidney's thick ascending limb, is a biomarker of kidney tubular health. However, the relationship between urine uromodulin and histologic changes in the kidney tubulointerstitium has not been characterized. In this study, we test the association of urine uromodulin with kidney histologic findings in humans and mice. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: We investigated the independent association of urine uromodulin measured at the time of kidney biopsy with histologic features in 364 participants at two academic medical centers from 2015 to 2018 using multivariable linear regression models. This relationship was further examined by comparison of uromodulin staining in murine models of kidney fibrosis and repair. RESULTS: We found urine uromodulin to be correlated with serum creatinine (rho=-0.43; P<0.001), bicarbonate (0.20; P<0.001), and hemoglobin (0.11; P=0.03) at the time of biopsy but not with urine albumin (-0.07; P=0.34). Multivariable models controlling for prebiopsy GFR, serum creatinine at biopsy, and urine albumin showed higher uromodulin to be associated with lower severity of interstitial fibrosis/tubular atrophy and glomerulosclerosis (interstitial fibrosis/tubular atrophy: -3.5% [95% confidence intervals, -5.7% to -1.2%] and glomerulosclerosis: -3.3% [95% confidence intervals, -5.9% to -0.6%] per two-fold difference in uromodulin). However, when both interstitial fibrosis/tubular atrophy and glomerulosclerosis were included in multivariable analysis, only interstitial fibrosis/tubular atrophy was independently associated with uromodulin (interstitial fibrosis/tubular atrophy: -2.5% [95% confidence intervals, -4.6% to -0.4%] and glomerulosclerosis: -0.9% [95% confidence intervals, -3.4% to 1.5%] per two-fold difference in uromodulin). In mouse kidneys, uromodulin staining was found to be lower in the fibrotic model than in normal or repaired models. CONCLUSIONS: Higher urine uromodulin is independently associated with lower tubulointerstitial fibrosis in both human kidney biopsies and a mouse model of fibrosis. PODCAST: This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_08_10_CJN04360422.mp3.


Assuntos
Nefropatias , Rim , Humanos , Camundongos , Animais , Uromodulina/urina , Creatinina , Rim/patologia , Nefropatias/patologia , Fibrose , Biomarcadores , Atrofia/patologia , Albuminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA