Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569445

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in signal transduction at the neuromuscular junction (NMJ). Movement of the nAChR extracellular domain following agonist binding induces conformational changes in the extracellular domain, which in turn affects the transmembrane domain and opens the ion channel. It is known that the surrounding environment, such as the presence of specific lipids and proteins, affects nAChR function. Diffracted X-ray tracking (DXT) facilitates measurement of the intermolecular motions of receptors on the cell membranes of living cells, including all the components involved in receptor function. In this study, the intramolecular motion of the extracellular domain of native nAChR proteins in living myotube cells was analyzed using DXT for the first time. We revealed that the motion of the extracellular domain in the presence of an agonist (e.g., carbamylcholine, CCh) was restricted by an antagonist (i.e., alpha-bungarotoxin, BGT).


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Raios X , Ligantes , Domínios Proteicos , Fibras Musculares Esqueléticas/metabolismo
2.
Physiol Plant ; 174(1): e13598, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34792189

RESUMO

Diatoms adapt to various aquatic light environments and play major roles in the global carbon cycle using their unique light-harvesting system, i.e. fucoxanthin chlorophyll a/c binding proteins (FCPs). Structural analyses of photosystem II (PSII)-FCPII and photosystem I (PSI)-FCPI complexes from the diatom Chaetoceros gracilis have revealed the localization and interactions of many FCPs; however, the entire set of FCPs has not been characterized. Here, we identify 46 FCPs in the newly assembled genome and transcriptome of C. gracilis. Phylogenetic analyses suggest that these FCPs can be classified into five subfamilies: Lhcr, Lhcf, Lhcx, Lhcz, and the novel Lhcq, in addition to a distinct type of Lhcr, CgLhcr9. The FCPs in Lhcr, including CgLhcr9 and some Lhcqs, have orthologous proteins in other diatoms, particularly those found in the PSI-FCPI structure. By contrast, the Lhcf subfamily, some of which were found in the PSII-FCPII complex, seems to be diversified in each diatom species, and the number of Lhcqs differs among species, indicating that their diversification may contribute to species-specific adaptations to light. Further phylogenetic analyses of FCPs/light-harvesting complex (LHC) proteins using genome data and assembled transcriptomes of other diatoms and microalgae in public databases suggest that our proposed classification of FCPs is common among various red-lineage algae derived from secondary endosymbiosis of red algae, including Haptophyta. These results provide insights into the loss and gain of FCP/LHC subfamilies during the evolutionary history of the red algal lineage.


Assuntos
Proteínas de Ligação à Clorofila , Diatomáceas , Clorofila A/química , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Filogenia , Xantofilas
3.
Biochem J ; 476(23): 3615-3630, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31738393

RESUMO

Cyanobacteria are potentially useful photosynthetic microorganisms for bioremediation under oligotrophic environments. Here, the biphenyl degradation pathway genes of ß-proteobacterium Acidovorax sp. strain KKS102 were co-expressed in cyanobacterium Synechocystis sp. PCC6803 cells under control of the photo-inducible psbE promoter. In the KKS102 cells, biphenyl is dioxygenated by bphA1 and bphA2 gene products complex using electrons supplied from NADH via bphA4 and bphA3 gene products (BphA4 and BphA3, respectively), and converted to benzoic acid by bphB, bphC and bphD gene products. Unexpectedly, biphenyl was effectively hydroxylated in oligotrophic BG11 medium by co-expressing the bphA3, bphA1 and bphA2 genes without the bphA4 gene, suggesting that endogenous cyanobacteria-derived protein(s) can supply electrons to reduce BphA3 at the start of the biphenyl degradation pathway. Furthermore, biphenyl was converted to benzoic acid by cyanobacterial cells co-expressing bphA3, bphA1, bphA2, bphB, bphC and bphD. Structural gene-screening using recombinant Escherichia coli cells co-expressing bphA3, bphA1, bphA2, bphB and bphC suggested that petH, which encodes long- and short-type NADP-ferredoxin oxidoreductase isomers (FNRL and FNRS, respectively), and slr0600, which is annotated as an NADPH-thioredoxin reductase gene in CyanoBase, were BphA3-reducible proteins. Purified FNRL and FNRS, and the slr0600 gene product showed BphA3 reductase activity dependent on NADPH and the reduced form of glutathione, respectively, potentially shedding light on the physiological roles of the slr0600 gene product in cyanobacterial cells. Collectively, our results demonstrate the utility of Synechocystis sp. PCC6803 cells as a host for bioremediation of biphenyl compounds under oligotrophic environments without an organic carbon source.


Assuntos
Compostos de Bifenilo/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Biodegradação Ambiental , Comamonadaceae/genética , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , Expressão Gênica/efeitos da radiação , Hidroxilação , Luz , NADP/metabolismo , Oxirredução , Fotossíntese/fisiologia , Plasmídeos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Tiorredoxina Dissulfeto Redutase/metabolismo
4.
Biosci Biotechnol Biochem ; 81(12): 2244-2252, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29098938

RESUMO

A unique electron-accepting analog of vitamin K1 found in photosystem I in several species of oxygenic photosynthetic microorganisms was confirmed to be 5'-hydroxyphylloquinone (1) through stereo-uncontrolled synthesis. Furthermore, the stereochemistry of 1 obtained from Synechococcus sp. PCC 7942 was assigned to be 5'S using proline-catalyzed stereocontrolled reactions.


Assuntos
Complexo de Proteína do Fotossistema I/metabolismo , Vitamina K 1/análogos & derivados , Transporte de Elétrons , Estereoisomerismo , Synechococcus/metabolismo , Vitamina K 1/química , Vitamina K 1/metabolismo
5.
Plant Physiol ; 166(1): 337-48, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25056923

RESUMO

Lichens result from symbioses between a fungus and either a green alga or a cyanobacterium. They are known to exhibit extreme desiccation tolerance. We investigated the mechanism that makes photobionts biologically active under severe desiccation using green algal lichens (chlorolichens), cyanobacterial lichens (cyanolichens), a cephalodia-possessing lichen composed of green algal and cyanobacterial parts within the same thallus, a green algal photobiont, an aerial green alga, and a terrestrial cyanobacterium. The photosynthetic response to dehydration by the cyanolichen was almost the same as that of the terrestrial cyanobacterium but was more sensitive than that of the chlorolichen or the chlorobiont. Different responses to dehydration were closely related to cellular osmolarity; osmolarity was comparable between the cyanolichen and a cyanobacterium as well as between a chlorolichen and a green alga. In the cephalodium-possessing lichen, osmolarity and the effect of dehydration on cephalodia were similar to those exhibited by cyanolichens. The green algal part response was similar to those exhibited by chlorolichens. Through the analysis of cellular osmolarity, it was clearly shown that photobionts retain their original properties as free-living organisms even after lichenization.


Assuntos
Clorófitas/fisiologia , Líquens/fisiologia , Nostoc commune/fisiologia , Simbiose , Água/fisiologia , Líquens/microbiologia , Pressão Osmótica , Fotossíntese
6.
Photosynth Res ; 126(2-3): 437-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26149177

RESUMO

The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean.


Assuntos
Diatomáceas/metabolismo , Xantofilas/metabolismo , Proteínas de Transporte/metabolismo , Clorofila/metabolismo , Clorofila A , Diatomáceas/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Tilacoides/metabolismo
7.
Photosynth Res ; 123(2): 203-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25297896

RESUMO

Chaetoceros gracilis belongs to the centric diatoms, and has recently been used in basic research on photosynthesis. In addition, it has been commercially used in fisheries and is also attracting interest as a feedstock for biofuels production and biorefinery. In this study, we developed an efficient genetic transformation system for C. gracilis. The diatom cells were transformed via multi-pulse electroporation using plasmids containing various promoters to drive expression of the nourseothricin acetyltransferase gene (nat) as a selectable marker. The transformation efficiency reached ~400 positive transgenic clones per 10(8) recipient cells, which is the first example of successful transformation with electroporation in a centric diatom species. We further produced two expression vectors: the vector pCgLhcr5p contains the light-dependent promoter of a fucoxanthin chlorophyll a/c binding protein gene and the vector pCgNRp contains the inducible promoter of a nitrate reductase gene to drive the expression of introduced genes. In both vectors, an acetyl-CoA acetyltransferase promoter drives nat gene expression for antibiotic selection. Stable integration and expression of reporter genes, such as the firefly luciferase and green fluorescent protein Azami-Green genes, were observed in transformed C. gracilis cells. This efficient and stable transformation system for C. gracilis will enable both functional analysis of diatom-specific genes and strain improvement for further biotechnological applications.


Assuntos
Diatomáceas/genética , Transformação Genética , Diatomáceas/efeitos dos fármacos , Diatomáceas/fisiologia , Resistência Microbiana a Medicamentos/genética , Eletroporação , Regulação da Expressão Gênica , Vetores Genéticos , Plasmídeos/genética , Estreptotricinas/farmacologia
8.
Front Plant Sci ; 15: 1409116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38916036

RESUMO

Prasiola crispa, an aerial green alga, exhibits remarkable adaptability to the extreme conditions of Antarctica by forming layered colonies capable of utilizing far-red light for photosynthesis. Despite a recent report on the structure of P. crispa's unique light-harvesting chlorophyll (Chl)-binding protein complex (Pc-frLHC), which facilitates far-red light absorption and uphill excitation energy transfer to photosystem II, the specific genes encoding the subunits of Pc-frLHC have not yet been identified. Here, we report a draft genome sequence of P. crispa strain 4113, originally isolated from soil samples on Ongul Island, Antarctica. We obtained a 92 Mbp sequence distributed in 1,045 scaffolds comprising 10,244 genes, reflecting 87.1% of the core eukaryotic gene set. Notably, 26 genes associated with the light-harvesting Chl a/b binding complex (LHC) were identified, including four Pc-frLHC genes, with similarity to a noncanonical Lhca gene with four transmembrane helices, such as Ot_Lhca6 in Ostreococcus tauri and Cr_LHCA2 in Chlamydomonas reinhardtii. A comparative analysis revealed that Pc-frLHC shares homology with certain Lhca genes found in Coccomyxa and Trebouxia species. This similarity indicates that Pc-frLHC has evolved from an ancestral Lhca gene with four transmembrane helices and branched out within the Trebouxiaceae family. Furthermore, RNA-seq analysis conducted during the initiation of Pc-frLHC gene induction under red light illumination indicated that Pc-frLHC genes were induced independently from other genes associated with photosystems or LHCs. Instead, the genes of transcription factors, helicases, chaperones, heat shock proteins, and components of blue light receptors were identified to coexpress with Pc-frLHC. Those kinds of information could provide insights into the expression mechanisms of Pc-frLHC and its evolutional development.

9.
J Biosci Bioeng ; 137(4): 245-253, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336581

RESUMO

In the practical scale of cyanobacterial cultivation, the golden algae Poterioochromonas malhamensis is a well-known predator that causes devastating damage to the culture, referred to as pond crash. The establishment and maintenance of monoculture conditions are ideal for large-scale cultures. However, this is a difficult challenge because microbial contamination is unavoidable in practical-scale culture facilities. In the present study, we unexpectedly observed the pond crash phenomenon during the pilot-scale cultivation of Synechococcus elongatus PCC 7942 using a 100-L photobioreactor. This was due to the contamination with P. malhamensis, which probably originated from residual fouling. Interestingly, we found that S.elongatus PCC 7942 can alter its morphological structure when subjected to continuous grazing pressure from predators, resulting in cells that were more than 100 times longer than those of the wild-type strain. These hyper-elongated S.elongatus PCC 7942 cells had mutations in the genes encoding FtsZ or Ftn2 which are involved in bacterial cell division. Importantly, the elongated phenotype remained stable during cultivation, enabling S.elongatus PCC 7942 to thrive and resist grazing. The cultivation of the elongated S.elongatus PCC 7942 mutant strain in a 100-L pilot-scale photobioreactor under non-sterile conditions resulted in increased cyanobacterial biomass without encountering pond crash. This study demonstrates an efficient strategy for cyanobacterial cell culture in practical-scale bioreactors without the need for extensive decontamination or sterilization of the growth medium and culture facility, which can contribute to economically viable cultivation and bioprocessing of microalgae.


Assuntos
Synechococcus , Synechococcus/genética , Engenharia Celular , Mutação
10.
Plant Cell Physiol ; 54(8): 1316-25, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23737501

RESUMO

Lichens are drought-resistant symbiotic organisms of mycobiont fungi and photobiont green algae or cyanobacteria, and have an efficient mechanism to dissipate excess captured light energy into heat in a picosecond time range to avoid photoinhibition. This mechanism can be assessed as drought-induced non-photochemical quenching (d-NPQ) using time-resolved fluorescence spectroscopy. A green alga Trebouxia sp., which lives within a lichen Ramalina yasudae, is one of the most common green algal photobionts. This alga showed very efficient d-NPQ under desiccation within the lichen thallus, whereas it lost d-NPQ ability when isolated from R. yasudae, indicating the importance of the interaction with the mycobiont for d-NPQ ability. We analyzed the water extracts from lichen thalli that enhanced d-NPQ in Trebouxia. Of several sugar compounds identified in the water extracts by nuclear magnetic resonance (NMR), mass spectrometry (MS) and gas chromatography (GC) analyses, only d-arabitol recovered d-NPQ in isolated Trebouxia to a level similar to that detected for R. yasudae thallus. Other sugar compounds did not help the expression of d-NPQ at the same concentrations. Thus, arabitol is essential for the expression of d-NPQ to dissipate excess captured light energy into heat, protecting the photobiont from photoinhibition. The relationship between mycobionts and photobionts is, therefore, not commensalism, but mutualism with each other, as shown by d-NPQ expression.


Assuntos
Ascomicetos/fisiologia , Clorófitas/fisiologia , Líquens/fisiologia , Álcoois Açúcares/metabolismo , Simbiose , Clorofila/metabolismo , Clorófitas/efeitos da radiação , Dessecação , Fluorescência , Líquens/microbiologia , Líquens/efeitos da radiação , Luz
11.
Photosynth Res ; 117(1-3): 245-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23812785

RESUMO

A divinyl chlorophyll (DV-Chl) a harboring mutant of Synechocystis sp. PCC 6803, in which chlorophyll species is replaced from monovinyl(normal)-Chl a to DV-Chl a, was characterized. The efficiency of light utilization for photosynthesis was decreased in the mutant. Absorption spectra at 77 K and their fourth derivative analyses revealed that peaks of each chlorophyll forms were blue-shifted by 1-2 nm, suggesting lowered stability of chlorophylls at their binding sites. This was also true both in PSI and PSII complexes. On the other hand, fluorescence emission spectra measured at 77 K were not different between wild type and the mutant. This indicates that the mode of interaction between chlorophyll and its binding pockets responsible for emitting fluorescence at 77 K is not altered in the mutant. P700 difference spectra of thylakoid membranes and PSI complexes showed that the spectrum in Soret region was red-shifted by 7 nm in the mutant. This is a characteristic feature of DV-Chl a. Microenvironments of iron-sulfur center of a terminal electron acceptor of PSI complex, P430, were practically the same as that of wild type.


Assuntos
Clorofila/metabolismo , Mutação/genética , Synechocystis/metabolismo , Compostos de Vinila/metabolismo , Clorofila/química , Elétrons , Proteínas Ferro-Enxofre/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Tilacoides/metabolismo , Compostos de Vinila/química
12.
Biosci Biotechnol Biochem ; 77(4): 874-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23563551

RESUMO

A highly efficient nuclear transformation method was established for the pennate diatom Phaeodactylum tricornutum using an electroporation system that drives multi-sequence pulses to introduce foreign DNAs into the cells. By optimizing pulse conditions, the diatom cells can be transformed without removing rigid silica-based cell walls, and high transformation efficiency (about 4,500 per 10(8) cells) is achieved.


Assuntos
Diatomáceas/genética , Eletroporação/métodos , Transformação Genética , Diatomáceas/citologia , Genes Reporter/genética , Organismos Geneticamente Modificados
13.
Nat Commun ; 14(1): 730, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792917

RESUMO

Prasiola crispa, an aerial green alga, forms layered colonies under the severe terrestrial conditions of Antarctica. Since only far-red light is available at a deep layer of the colony, P. crispa has evolved a molecular system for photosystem II (PSII) excitation using far-red light with uphill energy transfer. However, the molecular basis underlying this system remains elusive. Here, we purified a light-harvesting chlorophyll (Chl)-binding protein complex from P. crispa (Pc-frLHC) that excites PSII with far-red light and revealed its ring-shaped structure with undecameric 11-fold symmetry at 3.13 Šresolution. The primary structure suggests that Pc-frLHC evolved from LHCI rather than LHCII. The circular arrangement of the Pc-frLHC subunits is unique among eukaryote LHCs and forms unprecedented Chl pentamers at every subunit‒subunit interface near the excitation energy exit sites. The Chl pentamers probably contribute to far-red light absorption. Pc-frLHC's unique Chl arrangement likely promotes PSII excitation with entropy-driven uphill excitation energy transfer.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema I , Regiões Antárticas , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Clorofila/metabolismo
14.
Dev Biol ; 349(2): 462-9, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21112323

RESUMO

Mitochondria are accurately transmitted to the next generation through a female germ cell in most animals. Mitochondria produce most ATP, accompanied by the generation of reactive oxygen species (ROS). A specialized mechanism should be necessary for inherited mitochondria to escape from impairments of mtDNA by ROS. Inherited mitochondria are named germ-line mitochondria, in contrast with somatic ones. We hypothesized that germ-line mitochondria are distinct from somatic ones. The protein profiles of germ-line and somatic mitochondria were compared, using oocytes at two different stages in Xenopus laevis. Some subunits of ATP synthase were at a low level in germ-line mitochondria, which was confirmed immunologically. Ultrastructural histochemistry using 3,3'-diaminobenzidine (DAB) showed that cytochrome c oxidase (COX) activity of germ-line mitochondria was also at a low level. Mitochondria in one oocyte were segregated into germ-line mitochondria and somatic mitochondria, during growth from stage I to VI oocytes. Respiratory activity represented by ATP synthase expression and COX activity was shown to be low during most of the long gametogenetic period. We propose that germ-line mitochondria that exhibit suppressed respiration alleviate production of ROS and enable transmission of accurate mtDNA from generation to generation.


Assuntos
Células Germinativas/citologia , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Xenopus laevis/embriologia , 3,3'-Diaminobenzidina , Animais , Western Blotting , Respiração Celular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Perfilação da Expressão Gênica , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oócitos/metabolismo , Xenopus laevis/metabolismo
15.
Plant Cell Physiol ; 53(1): 237-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22138100

RESUMO

Thylakoid membranes contain two types of quinones, benzoquinone (plastoquinone) and naphthoquinone, which are involved in photosynthetic electron transfer. Unlike the benzoquinone, the chemical species of naphthoquinone present (phylloquinone, menaquinone-4 and 5'-monohydroxyphylloquinone) varies depending on the oxygenic photosynthetic organisms. The green alga Chlamydomonas reinhardtii has been used as a model organism to study the function of the naphthoquinone bound to PSI. However, the level of phylloquinone and the presence of other naphthoquinones in this organism remain unknown. In the present study, we found that 5'-monohydroxyphylloquinone is the predominant naphthoquinone in cell and thylakoid extracts based on the retention time during reverse phase HPLC, absorption and mass spectrometry measurements. It was shown that 5'-monohydroxyphylloquinone is enriched 2.5-fold in the PSI complex as compared with thylakoid membranes but that it is absent from PSI-deficient mutant cells. We also found a small amount of phylloquinone in the cells and in the PSI complex and estimated that accumulated 5'-monohydroxyphylloquinone and phylloquinone account for approximately 90 and 10%, respectively, of the total naphthoquinone content. The ratio of these two naphthoquinones remained nearly constant in the cells and in the PSI complexes from logarithmic and stationary cell growth stages. We conclude that both 5'-monohydroxyphylloquinone and phylloquinone stably co-exist as major and minor naphthoquinones in Chlamydomonas PSI.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Naftoquinonas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Vitamina K 1/análogos & derivados , Proliferação de Células , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Mutação/genética , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Vitamina K 1/química , Vitamina K 1/isolamento & purificação , Vitamina K 1/metabolismo
16.
Photosynth Res ; 111(1-2): 9-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21594712

RESUMO

In this study, gene sequences coding for the light-harvesting (LH) 2 polypeptides from a thermophilic purple sulfur bacterium Thermochromatium tepidum are reported and characterization of the LH2 complex is described. Three sets of pucBA genes have been identified, and the gene products have been analyzed by electrophoresis and reversed-phase chromatography. The result shows that all of the genes are expressed but the distribution of the expression is not uniform. The gene products undergo post-translational modification, where two of the ß-polypeptides appear to be N-terminally methylated. Absorption spectrum of the purified LH2 complex exhibits Q (y) transitions at 800 and 854 nm in dodecyl ß-maltopyranoside solution, and the circular dichroism spectrum shows a "molischianum"-like characteristic. No spectral change was observed for the LH2 when the bacterium was cultured under different conditions of light intensity. In lauryl dimethylamine N-oxide (LDAO) solution, significant changes in the absorption spectrum were observed. The B850 peak decreased and blue-shifted with increasing the LDAO concentration, whereas the B800 intensity increased without change in the peak position. The spectral changes can be partially or almost completely reversed by addition of metal ions, and the divalent cations seem to be more effective. The results indicate that ionic interactions may exist between LH2, detergent molecules and metal ions. Possible mechanisms involved in the detergent- and cation-induced spectral changes are discussed.


Assuntos
Chromatiaceae/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Chromatiaceae/genética , Cromatografia de Fase Reversa , DNA Bacteriano/química , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Dados de Sequência Molecular , Família Multigênica , Peptídeos/genética , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Análise de Sequência de DNA , Enxofre/metabolismo
17.
J Gen Appl Microbiol ; 68(3): 151-162, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35650023

RESUMO

A genetically modified (GM) strain of the diatom Chaetoceros gracilis expressing the phosphite dehydrogenase gene (ptxD), which is a useful gene both for the biological containment and the avoidance of microbial contamination, was characterized to estimate the risk against the biodiversity by laboratory experiments. GM strain could grow in the medium containing phosphite as a sole source of phosphorus, while its general characteristics such as growth, salt tolerance, heat and dehydration resistance in the normal phosphate-containing medium were equivalent to those of wild type (WT) strain. The increase in potential toxicity of GM strain against plant, crustacean, fish and mammal was also disproved. The dispersal ability of WT strain cultured in an outdoor raceway pond was investigated for 28 days by detecting the psb31 gene in vessels, settled at variable distances (between 5 and 60 m) from the pond. The diatom was detected only in one vessel placed 5 m apart. To estimate the influence on the environment, WT and GM strains were inoculated into freshwater, seawater and soil. The influence on the microbiome in those samples was assessed by 16S rRNA gene amplicon sequencing, in addition to the analysis of the survivability of those strains in the freshwater and the seawater. The results indicated that the effect to the microbiome and the survivability were comparable between WT and GM strains. All results showed that the introduction of the ptxD gene into the diatom had a low risk on biodiversity.


Assuntos
Diatomáceas , Fosfitos , Animais , Diatomáceas/genética , RNA Ribossômico 16S/genética , Biodiversidade , Medição de Risco , Mamíferos
18.
BioTech (Basel) ; 11(2)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35822782

RESUMO

Botryococcus braunii (B. braunii) is a green microalga primarily found in freshwater, reservoirs, and ponds. Photosynthetic pigments from algae have shown many bioactive molecules with therapeutic potential. Herein, we report the purification, characterization, and anticancer properties of photosystem I light-harvesting complex I (PSI-LHCI) from the green microalga B. braunii UTEX2441. The pigment-protein complex was purified by sucrose density gradient and characterized by its distinctive peaks using absorption, low-temperature (77 K) fluorescence, and circular dichroism (CD) spectroscopic analyses. Protein complexes were resolved by blue native-PAGE and two-dimensional SDS-PAGE. Triple-negative breast cancer MDA-MB-231 cells were incubated with PSI-LHCI for all of our experiments. Cell viability was assessed, revealing a significant reduction in a time- and concentration-dependent manner. We confirmed the internalization of PSI-LHCI within the cytoplasm and nucleus after 12 h of incubation. Cell death mechanism by oxidative stress was confirmed by the production of reactive oxygen species (ROS) and specifically superoxide. Furthermore, we monitored autophagic flux, apoptotic and necrotic features after treatment with PSI-LHCI. Treated MDA-MB-231 cells showed positive autophagy signals in the cytoplasm and nucleus, and necrotic morphology by the permeabilization of the cell membrane. Our findings demonstrated for the first time the cytotoxic properties of B. braunii PSI-LHCI by the induction of ROS and autophagy in breast cancer cells.

19.
J Phys Chem B ; 126(22): 4009-4021, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35617171

RESUMO

A theoretical model of the far-red-light-adapted photosystem I (PSI) reaction center (RC) complex of a cyanobacterium, Acaryochloris marina (AmPSI), was constructed based on the exciton theory and the recently identified molecular structure of AmPSI by Hamaguchi et al. (Nat. Commun., 2021, 12, 2333). A. marina performs photosynthesis under the visible to far-red light (400-750 nm), which is absorbed by chlorophyll d (Chl-d). It is in contrast to the situation of all the other oxygenic photosynthetic processes of cyanobacteria and plants, which contains chlorophyll a (Chl-a) that absorbs only 400-700 nm visible light. AmPSI contains 70 Chl-d, 1 Chl-d', 2 pheophytin a (Pheo-a), and 12 carotenoids in the currently available structure. A special pair of Chl-d/Chl-d' acts as the electron donor (P740) and two Pheo-a act as the primary electron acceptor A0 as the counterparts of P700 and Chl-a, respectively, of Chl-a-type PSIs. The exciton Hamiltonian of AmPSI was constructed considering the excitonic coupling strength and site energy shift of individual pigments using the Poisson-TrESP (P-TrESP) and charge density coupling (CDC) methods. The model was constructed to fit the experimentally measured spectra of absorption and circular dichroism (CD) spectra during downhill/uphill excitation energy transfer processes. The constructed theoretical model of AmPSI was further compared with the Chl-a-type PSI of Thermosynechococcus elongatus (TePSI), which contains only Chl-a and Chl-a'. The functional properties of AmPSI and TePSI were further examined by the in silico exchange of Chl-d by Chl-a in the models.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema I , Clorofila/química , Clorofila A , Cianobactérias/metabolismo , Luz , Modelos Teóricos , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química
20.
Biochemistry ; 50(3): 329-39, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21141807

RESUMO

Sll1252 was identified as a novel protein in photosystem II complexes from Synechocystis sp. PCC 6803. To investigate the function of Sll1252, the corresponding gene, sll1252, was deleted in Synechocystis 6803. Despite the homology of Sll1252 to YlmH, which functions in the cell division machinery in Streptococcus, the growth rate and cell morphology of the mutant were not affected in normal growth medium. Instead, it seems that cells lacking this polypeptide have increased sensitivity to Cl(-) depletion. The growth and oxygen evolving activity of the mutant cells was highly suppressed compared with those of wild-type cells when Cl(-) and/or Ca(2+) was depleted from the medium. Recovery of photosystem II from photoinhibition was suppressed in the mutant. Despite the defects in photosystem II, in the light, the acceptor side of photosystem II was more reduced and the donor side of photosystem I was more oxidized compared with wild-type cells, suggesting that functional impairments were also present in cytochrome b(6)/f complexes. The amounts of cytochrome c(550) and cytochrome f were smaller in the mutant in the Ca(2+)- and Cl(-)-depleted medium. Furthermore, the amount of IsiA protein was increased in the mutant, especially in the Cl(-)-depleted medium, indicating that the mutant cells perceive environmental stress to be greater than it is. The amount of accompanying cytochrome c(550) in purified photosystem II complexes was also smaller in the mutant. Overall, the Sll1252 protein appears to be closely related to redox sensing of the plastoquinone pool to balance the photosynthetic electron flow and the ability to cope with global environmental stresses.


Assuntos
Proteínas de Bactérias/metabolismo , Transporte de Elétrons/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cálcio/metabolismo , Cloretos/metabolismo , Citocromos/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Dados de Sequência Molecular , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA