Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(6): 1460-1473.e17, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32916129

RESUMO

The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/genética , Síndrome do Intestino Irritável/metabolismo , Metaboloma , Purinas/metabolismo , Transcriptoma/genética , Animais , Ácidos e Sais Biliares/metabolismo , Biópsia , Butiratos/metabolismo , Cromatografia Líquida , Estudos Transversais , Epigenômica , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Hipoxantina/metabolismo , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/microbiologia , Estudos Longitudinais , Masculino , Metaboloma/fisiologia , Camundongos , Estudos Observacionais como Assunto , Estudos Prospectivos , Software , Espectrometria de Massas em Tandem , Transcriptoma/fisiologia
2.
Cell ; 175(4): 962-972.e10, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388453

RESUMO

Many US immigrant populations develop metabolic diseases post immigration, but the causes are not well understood. Although the microbiome plays a role in metabolic disease, there have been no studies measuring the effects of US immigration on the gut microbiome. We collected stool, dietary recalls, and anthropometrics from 514 Hmong and Karen individuals living in Thailand and the United States, including first- and second-generation immigrants and 19 Karen individuals sampled before and after immigration, as well as from 36 US-born European American individuals. Using 16S and deep shotgun metagenomic DNA sequencing, we found that migration from a non-Western country to the United States is associated with immediate loss of gut microbiome diversity and function in which US-associated strains and functions displace native strains and functions. These effects increase with duration of US residence and are compounded by obesity and across generations.


Assuntos
Povo Asiático , Emigração e Imigração , Microbioma Gastrointestinal , Adulto , Bacteroides/isolamento & purificação , Fibras na Dieta/metabolismo , Emigrantes e Imigrantes , Humanos , Metagenoma , Obesidade/epidemiologia , Obesidade/microbiologia , Prevotella/isolamento & purificação , Estados Unidos
4.
Gastroenterology ; 166(6): 976-994, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325759

RESUMO

Chronic visceral pain is one of the most common reasons for patients with gastrointestinal disorders, such as inflammatory bowel disease or disorders of brain-gut interaction, to seek medical attention. It represents a substantial burden to patients and is associated with anxiety, depression, reductions in quality of life, and impaired social functioning, as well as increased direct and indirect health care costs to society. Unfortunately, the diagnosis and treatment of chronic visceral pain is difficult, in part because our understanding of the underlying pathophysiologic basis is incomplete. In this review, we highlight recent advances in peripheral pain signaling and specific physiologic and pathophysiologic preclinical mechanisms that result in the sensitization of peripheral pain pathways. We focus on preclinical mechanisms that have been translated into treatment approaches and summarize the current evidence base for directing treatment toward these mechanisms of chronic visceral pain derived from clinical trials. The effective management of chronic visceral pain remains of critical importance for the quality of life of suffers. A deeper understanding of peripheral pain mechanisms is necessary and may provide the basis for novel therapeutic interventions.


Assuntos
Dor Crônica , Dor Visceral , Humanos , Dor Visceral/fisiopatologia , Dor Visceral/terapia , Dor Visceral/diagnóstico , Dor Visceral/etiologia , Dor Crônica/terapia , Dor Crônica/fisiopatologia , Dor Crônica/diagnóstico , Dor Crônica/psicologia , Animais , Qualidade de Vida , Transdução de Sinais
5.
Annu Rev Nutr ; 43: 355-383, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37380178

RESUMO

Diet is an important determinant of health and consequently is often implicated in the development of disease, particularly gastrointestinal (GI) diseases, given the high prevalence of meal-related symptoms. The mechanisms underlying diet-driven pathophysiology are not well understood, but recent studies suggest that gut microbiota may mediate the effect of diet on GI physiology. In this review, we focus primarily on two distinct GI diseases where the role of diet has been best studied: irritable bowel syndrome and inflammatory bowel disease. We discuss how the concurrent and sequential utilization of dietary nutrients by the host and gut microbiota determines the eventual bioactive metabolite profiles in the gut and the biological effect of these metabolites on GI physiology. We highlight several concepts that can be gleaned from these findings, such as how distinct effects of an individual metabolite can influence diverse GI diseases, the effect of similar dietary interventions on multiple disease states, and the need for extensive phenotyping and data collection to help make personalized diet recommendations.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Microbiota , Humanos , Dieta , Gastroenteropatias/terapia , Síndrome do Intestino Irritável/terapia , Microbioma Gastrointestinal/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38934370

RESUMO

BACKGROUND AND AIM: Patients with intestinal failure (IF) have abnormal intestinal anatomy, secretion, and dysmotility, which impairs intestinal homeostatic mechanisms and may lead to small intestinal bacterial overgrowth (SIBO). We conducted a systematic review and meta-analysis to determine the prevalence of SIBO in patients with IF and to identify risk factors for SIBO. METHODS: MEDLINE (PubMed) and Embase electronic databases were searched from inception to December 2023 for studies that reported the prevalence of SIBO in IF. The prevalence rates, odds ratio (OR), and 95% confidence intervals of SIBO in IF and the risk factors for SIBO in IF were calculated using random effects model. RESULTS: Final dataset included nine studies reporting on 407 patients with IF. The prevalence of SIBO in IF was 57.5% (95% CI 44.6-69.4), with substantial heterogeneity in this analysis (I2 = 80.9, P = 0.0001). SIBO prevalence was sixfold higher in patients with IF who received parenteral nutrition (PN) compared with IF patients not on PN (OR = 6.0, 95% CI 3.0-11.9, P = 0.0001). Overall, the prevalence of SIBO in patients with IF using PPI/acid-suppressing agents (72.0%, 95% CI 57.5-83.8) was numerically higher compared with IF patients not using these agents (47.6%, 95% CI 25.7-70.2). CONCLUSIONS: This systematic review and meta-analysis suggests that there is an increased risk of SIBO in patients with IF and that PN, and potentially, the use of PPI/acid-suppressing agents is risk factors for SIBO development in patients with IF. However, the quality of evidence is low and can be attributed to lack of case-control studies and clinical heterogeneity seen in the studies.

7.
Cancer Metastasis Rev ; 40(3): 777-789, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34455517

RESUMO

Recent studies of the human microbiome have offered new insights into how the microbiome can impact cancer development and treatment. Specifically, in pancreatic ductal adenocarcinoma (PDAC), the microbiota has been shown to modulate PDAC risk, contribute to tumorigenesis, impact the tumor microenvironment, and alter treatment response. These findings provide rationale for further investigations into leveraging the microbiome to develop new strategies to diagnose and treat PDAC patients. There is growing evidence that microbiome analyses have the potential to become easily performed, non-invasive diagnostic, prognostic, and predictive biomarkers in pancreatic cancer. More excitingly, there is now emerging interest in developing interventions based on the modulation of microbiota. Fecal microbiota transplantation, probiotics, dietary changes, and antibiotics are all potential strategies to augment the efficacy of current therapeutics and reduce toxicities. While there are still challenges to overcome, this is a rapidly growing field that holds promise for translation into clinical practice and provides a new approach to improving patient outcomes.


Assuntos
Carcinoma Ductal Pancreático , Microbiota , Neoplasias Pancreáticas , Probióticos , Carcinoma Ductal Pancreático/terapia , Transplante de Microbiota Fecal , Humanos , Neoplasias Pancreáticas/terapia , Probióticos/uso terapêutico , Microambiente Tumoral
8.
Gastroenterology ; 160(2): 538-555, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253687

RESUMO

There have been numerous human studies reporting associations between the intestinal microbiome and functional gastrointestinal disorders (FGIDs), and independently animal studies have explored microbiome-driven mechanisms underlying FGIDs. However, there is often a disconnect between human and animal studies, which hampers translation of microbiome findings to the clinic. Changes in the microbiota composition of patients with FGIDs are generally subtle, whereas changes in microbial function, reflected in the fecal metabolome, appear to be more precise indicators of disease subtype-specific mechanisms. Although we have made significant progress in characterizing the microbiome, to effectively translate microbiome science in a timely manner, we need concurrent and iterative longitudinal studies in humans and animals to determine the precise microbial functions that can be targeted to address specific pathophysiological processes in FGIDs. A systems approach integrating multiple data layers rather than evaluating individual data layers of symptoms, physiological changes, or -omics data in isolation will allow for validation of mechanistic insights from animal studies while also allowing new discovery. Patient stratification for clinical trials based on functional microbiome alterations and/or pathophysiological measurements may allow for more accurate determination of efficacy of individual microbiome-targeted interventions designed to correct an underlying abnormality. In this review, we outline current approaches and knowledge, and identify gaps, to provide a potential roadmap for accelerating translation of microbiome science toward microbiome-targeted personalized treatments for FGIDs.


Assuntos
Gastroenteropatias/microbiologia , Gastroenteropatias/terapia , Microbioma Gastrointestinal/fisiologia , Animais , Dieta , Modelos Animais de Doenças , Gastroenteropatias/fisiopatologia , Humanos , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/fisiopatologia , Síndrome do Intestino Irritável/terapia
9.
Gastroenterology ; 161(4): 1194-1207.e8, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245762

RESUMO

BACKGROUND & AIMS: The gut virome includes eukaryotic viruses and bacteriophages that can shape the gut bacterial community and elicit host responses. The virome can be implicated in diseases, such as irritable bowel syndrome (IBS), where gut bacteria play an important role in pathogenesis. We provide a comprehensive and longitudinal characterization of the virome, including DNA and RNA viruses and paired multi-omics data in a cohort of healthy subjects and patients with IBS. METHODS: We selected 2 consecutive stool samples per subject from a longitudinal study cohort and performed metagenomic sequencing on DNA and RNA viruses after enriching for viral-like particles. Viral sequence abundance was evaluated over time, as well as in the context of diet, bacterial composition and function, metabolite levels, colonic gene expression, host genetics, and IBS subsets. RESULTS: We found that the gut virome was temporally stable and correlated with the colonic transcriptome. We identified IBS-subset-specific changes in phage populations; Microviridae, Myoviridae, and Podoviridae species were elevated in diarrhea-predominant IBS, and other Microviridae and Myoviridae species were elevated in constipation-predominant IBS compared to healthy controls. We identified correlations between subsets of the virome and bacterial composition (unclassifiable "dark matter" and phages) and diet (eukaryotic viruses). CONCLUSIONS: We found that the gut virome is stable over time but varies among subsets of patients with IBS. It can be affected by diet and potentially influences host function via interactions with gut bacteria and/or altering host gene expression.


Assuntos
Dieta , Intestinos/virologia , Síndrome do Intestino Irritável/virologia , Transcriptoma , Viroma , Vírus/crescimento & desenvolvimento , Adulto , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Estudos de Casos e Controles , Dieta/efeitos adversos , Feminino , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Intestinos/microbiologia , Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/microbiologia , Estudos Longitudinais , Masculino , Metagenoma , Metagenômica , Pessoa de Meia-Idade , Virologia , Vírus/genética
10.
Gastroenterology ; 160(3): 941-945.e8, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197449

RESUMO

The increasing incidence of primary and recurring Clostridioides difficile infections (CDI), which evade current treatment strategies, reflects the changing biology of C difficile. Here, we describe a putative plasmid-mediated mechanism potentially driving decreased sensitivity of C difficile to vancomycin treatment. We identified a broad host range transferable plasmid in a C difficile strain associated with lack of adequate response to vancomycin treatment. The transfer of this plasmid to a vancomycin-susceptible C difficile isolate decreased its susceptibility to vancomycin in vitro and resulted in more severe disease in a humanized mouse model. Our findings suggest plasmid acquisition in the gastrointestinal tract to be a possible mechanism underlying vancomycin treatment failure in patients with CDI, but further work is needed to characterize the mechanism by which plasmid genes determine vancomycin susceptibility in C difficile.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/genética , Infecções por Clostridium/tratamento farmacológico , Plasmídeos/genética , Vancomicina/farmacologia , Animais , Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana/genética , Vida Livre de Germes , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Plasmídeos/isolamento & purificação , Vancomicina/uso terapêutico , Sequenciamento Completo do Genoma
11.
Clin Infect Dis ; 72(5): 806-813, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32064535

RESUMO

BACKGROUND: Current approaches in tracking Clostridioides difficile infection (CDI) and individualizing patient management are incompletely defined. METHODS: We recruited 468 subjects with CDI at Mayo Clinic Rochester between May and December 2016 and performed whole-genome sequencing (WGS) on C. difficile isolates from 397. WGS was also performed on isolates from a subset of the subjects at the time of a recurrence of infection. The sequence data were analyzed by determining core genome multilocus sequence type (cgMLST), with isolates grouped by allelic differences and the predicted ribotype. RESULTS: There were no correlations between C. difficile isolates based either on cgMLST or ribotype groupings and CDI outcome. An epidemiologic assessment of hospitalized subjects harboring C. difficile isolates with ≤2 allelic differences, based on standard infection prevention and control assessment, revealed no evidence of person-to-person transmission. Interestingly, community-acquired CDI subjects in 40% of groups with ≤2 allelic differences resided within the same zip code. Among 18 subjects clinically classified as having recurrent CDI, WGS revealed 14 with initial and subsequent isolates differing by ≤2 allelic differences, suggesting a relapse of infection with the same initial strain, and 4 with isolates differing by >50 allelic differences, suggesting reinfection. Among the 5 subjects classified as having a reinfection based on the timing of recurrence, 3 had isolates with ≤2 allelic differences between them, suggesting a relapse, and 2 had isolates differing by >50 allelic differences, suggesting reinfection. CONCLUSIONS: Our findings point to potential transmission of C. difficile in the community. WGS better differentiates relapse from reinfection than do definitions based on the timing of recurrence.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Clostridioides , Clostridioides difficile/genética , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/epidemiologia , Humanos , Recidiva , Reinfecção , Ribotipagem
12.
Gastroenterology ; 159(2): 467-480, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592699

RESUMO

BACKGROUND & AIMS: We aimed to compare the effectiveness of single- vs multiple-strain probiotics in a network meta-analysis of randomized trials. METHODS: We searched MEDLINE, Embase, Science Citation Index Expanded, CINAHL, Scopus, Cochrane CENTRAL, BIOSIS Previews, and Google Scholar through January 1, 2019, for studies of single-strain and multistrain probiotic formulations on the outcomes of preterm, low-birth-weight neonates. We used a frequentist approach for network meta-analysis and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach to assess the certainty of evidence. Primary outcomes included all-cause mortality, severe necrotizing enterocolitis (NEC) (Bell stage II or more), and culture-proven sepsis. RESULTS: We analyzed data from 63 trials involving 15,712 preterm infants. Compared with placebo, a combination of 1 or more Lactobacillus species (spp) and 1 or more Bifidobacterium spp was the only intervention with moderate- or high-quality evidence of reduced all-cause mortality (odds ratio [OR], 0.56; 95% confidence interval [CI], 0.39-0.80). Among interventions with moderate- or high-quality evidence for efficacy compared with placebo, combinations of 1 or more Lactobacillus spp and 1 or more Bifidobacterium spp, Bifidobacterium animalis subspecies lactis, Lactobacillus reuteri, or Lactobacillus rhamnosus significantly reduced severe NEC (OR, 0.35 [95% CI, 0.20-0.59]; OR, 0.31 [95% CI, 0.13-0.74]; OR, 0.55 [95% CI, 0.34-0.91]; and OR, 0.44 [95% CI, 0.21-0.90], respectively). There was moderate- or high-quality evidence that combinations of 1 or more Lactobacillus spp and 1 or more Bifidobacterium spp and Saccharomyces boulardii reduced the number of days to reach full feeding (mean reduction of 3.30 days [95% CI, reduction of 5.91-0.69 days]). There was moderate- or high-quality evidence that, compared with placebo, the single-species product B animalis subsp lactis or L reuteri significantly reduced duration of hospitalization (mean reduction of 13.00 days [95% CI, reduction of 22.71-3.29 days] and mean reduction of 7.89 days [95% CI, reduction of 11.60-4.17 days], respectively). CONCLUSIONS: In a systematic review and network meta-analysis of studies to determine the effects of single-strain and multistrain probiotic formulations on outcomes of preterm, low-birth-weight neonates, we found moderate to high evidence for the superiority of combinations of 1 or more Lactobacillus spp and 1 or more Bifidobacterium spp vs single- and other multiple-strain probiotic treatments. The combinations of Bacillus spp and Enterococcus spp, and 1 or more Bifidobacterium spp and Streptococcus salivarius subsp thermophilus, might produce the largest reduction in NEC development. Further trials are needed.


Assuntos
Enterocolite Necrosante/epidemiologia , Microbioma Gastrointestinal/fisiologia , Mortalidade Infantil , Sepse Neonatal/epidemiologia , Probióticos/administração & dosagem , Enterocolite Necrosante/microbiologia , Enterocolite Necrosante/fisiopatologia , Enterocolite Necrosante/prevenção & controle , Humanos , Lactente , Recém-Nascido de Baixo Peso/fisiologia , Recém-Nascido , Recém-Nascido Prematuro/fisiologia , Sepse Neonatal/microbiologia , Sepse Neonatal/fisiopatologia , Sepse Neonatal/prevenção & controle , Metanálise em Rede , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
13.
BMC Microbiol ; 21(1): 24, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430766

RESUMO

BACKGROUND: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS: This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Berberina/administração & dosagem , Ácidos e Sais Biliares/metabolismo , RNA Ribossômico 16S/genética , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Berberina/farmacologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Masculino , Metabolômica , Camundongos , Análise de Sequência de RNA , Especificidade da Espécie
14.
Gut ; 69(1): 62-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30923071

RESUMO

OBJECTIVE: The intestinal lumen contains several proteases. Our aim was to determine the role of faecal proteases in mediating barrier dysfunction and symptoms in IBS. DESIGN: 39 patients with IBS and 25 healthy volunteers completed questionnaires, assessments of in vivo permeability, ex vivo colonic barrier function in Ussing chambers, tight junction (TJ) proteins, ultrastructural morphology and 16 s sequencing of faecal microbiota rRNA. A casein-based assay was used to measure proteolytic activity (PA) in faecal supernatants (FSNs). Colonic barrier function was determined in mice (ex-germ free) humanised with microbial communities associated with different human PA states. RESULTS: Patients with IBS had higher faecal PA than healthy volunteers. 8/20 postinfection IBS (PI-IBS) and 3/19 constipation- predominant IBS had high PA (>95th percentile). High-PA patients had more and looser bowel movements, greater symptom severity and higher in vivo and ex vivo colonic permeability. High-PA FSNs increased paracellular permeability, decreased occludin and increased phosphorylated myosin light chain (pMLC) expression. Serine but not cysteine protease inhibitor significantly blocked high-PA FSN effects on barrier. The effects on barrier were diminished by pharmacological or siRNA inhibition of protease activated receptor-2 (PAR-2). Patients with high-PA IBS had lower occludin expression, wider TJs on biopsies and reduced microbial diversity than patients with low PA. Mice humanised with high-PA IBS microbiota had greater in vivo permeability than those with low-PA microbiota. CONCLUSION: A subset of patients with IBS, especially in PI-IBS, has substantially high faecal PA, greater symptoms, impaired barrier and reduced microbial diversity. Commensal microbiota affects luminal PA that can influence host barrier function.


Assuntos
Síndrome do Intestino Irritável/fisiopatologia , Serina Proteases/fisiologia , Adulto , Animais , Biópsia , Células CACO-2 , Estudos de Casos e Controles , Colo/patologia , Disbiose/enzimologia , Fezes/enzimologia , Feminino , Microbioma Gastrointestinal , Humanos , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/enzimologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Permeabilidade , Estudos Prospectivos , Proteólise , Índice de Gravidade de Doença , Proteínas de Junções Íntimas/metabolismo
15.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G382-G390, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755308

RESUMO

The early stages of the metagenomics era produced countless observational studies linking various human diseases to alterations in the gut microbiota. Only recently have we begun to decipher the causal roles that gut microbes play in many of these conditions. Despite an incomplete understanding of how gut microbes influence pathophysiology, clinical trials have tested empirically numerous microbiota-targeting therapies to prevent or treat disease. Unsurprisingly, these trials have yielded mixed results. Nonetheless, the consumer market for probiotics, prebiotics, and synbiotics continues to grow. This theme paper highlights recent discoveries of mechanisms underlying diet-microbial-host interactions as they pertain to growth and metabolism and discusses current and future applications of microbiota-targeting therapies in the context of child malnutrition as well as obesity and its metabolic comorbidities, including nonalcoholic fatty liver disease and cardiovascular disease. We also highlight current challenges and identify future directions to facilitate a more efficient and direct path to clinical impact.


Assuntos
Fenômenos Fisiológicos do Sistema Digestório/genética , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiologia , Prebióticos , Probióticos/uso terapêutico , Simbióticos , Gastroenteropatias/prevenção & controle , Trato Gastrointestinal/crescimento & desenvolvimento , Genômica , Humanos
16.
Environ Res ; 186: 109485, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32289569

RESUMO

BACKGROUND: Poor air quality is increasingly associated with several gastrointestinal diseases suggesting a possible association between air quality and the human gut microbiome. However, details on this remain largely unexplored as current available research is scarce. The aim of this comprehensive rigorous review was to summarize the existing reports on the impact of indoor or outdoor airborne pollutants on the animal and human gut microbiome and to outline the challenges and suggestions to expand this field of research. METHODS AND RESULTS: A comprehensive search of several databases (inception to August 9, 2019, humans and animals, English language only) was designed and conducted by an experienced librarian to identify studies describing the impact of air pollution on the human gut microbiome. The retrieved articles were assessed independently by two reviewers. This process yielded six original research papers on the animal GI gastrointestinal microbiome and four on the human gut microbiome. ß-diversity analyses from selected animal studies demonstrated a significantly different composition of the gut microbiota between control and exposed groups but changes in α-diversity were less uniform. No consistent findings in α or ß-diversity were reported among the human studies. Changes in microbiota at the phylum level disclosed substantial discrepancies across animal and human studies. CONCLUSIONS: A different composition of the gut microbiome, particularly in animal models, is associated with exposure to air pollution. Air pollution is associated with various taxa changes, which however do not follow a clear pattern. Future research using standardized methods are critical to replicate these initial findings and advance this emerging field.


Assuntos
Poluição do Ar , Gastroenteropatias , Microbioma Gastrointestinal , Microbiota , Poluição do Ar/efeitos adversos , Animais , Humanos
18.
Clin Gastroenterol Hepatol ; 17(2): 256-274, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153517

RESUMO

The importance of gut microbiota in gastrointestinal (GI) physiology was well described, but our ability to study gut microbial ecosystems in their entirety was limited by culture-based methods prior to the sequencing revolution. The advent of high-throughput sequencing opened new avenues, allowing us to study gut microbial communities as an aggregate, independent of our ability to culture individual microbes. Early studies focused on association of changes in gut microbiota with different disease states, which was necessary to identify a potential role for microbes and generate novel hypotheses. Over the past few years the field has moved beyond associations to better understand the mechanistic implications of the microbiome in the pathophysiology of complex diseases. This movement also has resulted in a shift in our focus toward therapeutic strategies, which rely on better understanding the mediators of gut microbiota-host cross-talk. It is not surprising the gut microbiome has been implicated in the pathogenesis of functional gastrointestinal disorders given its role in modulating physiological processes such as immune development, GI motility and secretion, epithelial barrier integrity, and brain-gut communication. In this review, we focus on the current state of knowledge and future directions in microbiome research as it pertains to functional gastrointestinal disorders. We summarize the factors that help shape the gut microbiome in human beings. We discuss data from animal models and human studies to highlight existing paradigms regarding the mechanisms underlying microbiota-mediated alterations in physiological processes and their relevance in human interventions. While translation of microbiome science is still in its infancy, the outlook is optimistic and we are advancing in the right direction toward precise mechanism-based microbiota therapies.


Assuntos
Disbiose/complicações , Gastroenteropatias/fisiopatologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Microbiota , Animais , Modelos Animais de Doenças , Humanos
19.
FASEB J ; : fj201800560R, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897814

RESUMO

Intestinal barrier function and microbiota are integrally related and play critical roles in maintenance of host physiology. Sex is a key biologic variable for several disorders. Our aim was to determine sex-based differences in response to perturbation and subsequent recovery of intestinal barrier function and microbiota in healthy humans. Twenty-three volunteers underwent duodenal biopsies, mucosal impedance, and in vivo permeability measurement. Permeability testing was repeated after administration of indomethacin, then 4 to 6 wk after its discontinuation. Duodenal and fecal microbiota composition was determined using 16S rRNA amplicon sequencing. Healthy women had lower intestinal permeability and higher duodenal and fecal microbial diversity than healthy men. Intestinal permeability increases after indomethacin administration in both sexes. However, only women demonstrated decreased fecal microbial diversity, including an increase in Prevotella abundance, after indomethacin administration. Duodenal microbiota composition did not show sex-specific changes. The increase in permeability and microbiota changes normalized after discontinuation of indomethacin. In summary, women have lower intestinal permeability and higher microbial diversity. Intestinal permeability is sensitive to perturbation but recovers to baseline. Gut microbiota in women is sensitive to perturbation but appears to be more stable in men. Sex-based differences in intestinal barrier function and microbiome should be considered in future studies.-Edogawa, S., Peters, S. A., Jenkins, G. D., Gurunathan, S. V., Sundt, W. J., Johnson, S., Lennon, R. J., Dyer, R. B., Camilleri, M., Kashyap, P. C., Farrugia, G., Chen, J., Singh, R. J., Grover, M. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota.

20.
Nature ; 502(7469): 96-9, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23995682

RESUMO

The human intestine, colonized by a dense community of resident microbes, is a frequent target of bacterial pathogens. Undisturbed, this intestinal microbiota provides protection from bacterial infections. Conversely, disruption of the microbiota with oral antibiotics often precedes the emergence of several enteric pathogens. How pathogens capitalize upon the failure of microbiota-afforded protection is largely unknown. Here we show that two antibiotic-associated pathogens, Salmonella enterica serovar Typhimurium (S. typhimurium) and Clostridium difficile, use a common strategy of catabolizing microbiota-liberated mucosal carbohydrates during their expansion within the gut. S. typhimurium accesses fucose and sialic acid within the lumen of the gut in a microbiota-dependent manner, and genetic ablation of the respective catabolic pathways reduces its competitiveness in vivo. Similarly, C. difficile expansion is aided by microbiota-induced elevation of sialic acid levels in vivo. Colonization of gnotobiotic mice with a sialidase-deficient mutant of Bacteroides thetaiotaomicron, a model gut symbiont, reduces free sialic acid levels resulting in C. difficile downregulating its sialic acid catabolic pathway and exhibiting impaired expansion. These effects are reversed by exogenous dietary administration of free sialic acid. Furthermore, antibiotic treatment of conventional mice induces a spike in free sialic acid and mutants of both Salmonella and C. difficile that are unable to catabolize sialic acid exhibit impaired expansion. These data show that antibiotic-induced disruption of the resident microbiota and subsequent alteration in mucosal carbohydrate availability are exploited by these two distantly related enteric pathogens in a similar manner. This insight suggests new therapeutic approaches for preventing diseases caused by antibiotic-associated pathogens.


Assuntos
Antibacterianos/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Clostridioides difficile/fisiologia , Enterocolite Pseudomembranosa/microbiologia , Mucosa Intestinal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Animais , Bacteroides/fisiologia , Feminino , Fucose/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mucosa Intestinal/metabolismo , Masculino , Metagenoma/efeitos dos fármacos , Metagenoma/fisiologia , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA