RESUMO
γδ T cells are essential for immune defense and modulating physiological processes. While they have the potential to recognize large numbers of antigens through somatic gene rearrangement, the antigens which trigger most γδ T cell response remain unidentified, and the role of antigen recognition in γδ T cell function is contentious. Here, we show that some γδ T cell receptors (TCRs) exhibit polyspecificity, recognizing multiple ligands of diverse molecular nature. These ligands include haptens, metabolites, neurotransmitters, posttranslational modifications, as well as peptides and proteins of microbial and host origin. Polyspecific γδ T cells are enriched among activated cells in naive mice and the responding population in infection. They express diverse TCR sequences, have different functional potentials, and include the innate-like γδ T cells, such as the major IL-17 responders in various pathological/physiological conditions. We demonstrate that encountering their antigenic microbiome metabolite maintains their homeostasis and functional response, indicating that their ability to recognize multiple ligands is essential for their function. Human γδ T cells with similar polyspecificity also respond to various immune challenges. This study demonstrates that polyspecificity is a prevalent feature of γδ T cell antigen recognition, which enables rapid and robust T cell responses to a wide range of challenges, highlighting a unique function of γδ T cells.
Assuntos
Antígenos de Grupos Sanguíneos , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Camundongos , Animais , Antígenos , HaptenosRESUMO
The ideal vaccine against viruses such as influenza and SARS-CoV-2 must provide a robust, durable and broad immune protection against multiple viral variants. However, antibody responses to current vaccines often lack robust cross-reactivity. Here we describe a polymeric Toll-like receptor 7 agonist nanoparticle (TLR7-NP) adjuvant, which enhances lymph node targeting, and leads to persistent activation of immune cells and broad immune responses. When mixed with alum-adsorbed antigens, this TLR7-NP adjuvant elicits cross-reactive antibodies for both dominant and subdominant epitopes and antigen-specific CD8+ T-cell responses in mice. This TLR7-NP-adjuvanted influenza subunit vaccine successfully protects mice against viral challenge of a different strain. This strategy also enhances the antibody response to a SARS-CoV-2 subunit vaccine against multiple viral variants that have emerged. Moreover, this TLR7-NP augments antigen-specific responses in human tonsil organoids. Overall, we describe a nanoparticle adjuvant to improve immune responses to viral antigens, with promising implications for developing broadly protective vaccines.
Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Receptor 7 Toll-Like/genética , SARS-CoV-2/genética , COVID-19/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Imunidade , Vacinas de Subunidades AntigênicasRESUMO
The response of gamma delta (γδ) T cells in the acute versus chronic phases of the same infection is unclear. How γδ T cells function in acute Mycobacterium tuberculosis (Mtb) infection is well characterized, but their response during persistent Mtb infection is not well understood, even though most infections with Mtb manifest as a chronic, clinically asymptomatic state. Here, we analyze peripheral blood γδ T cells from a South African adolescent cohort and show that a unique CD8+ γδ T cell subset with features of "memory inflation" expands in chronic Mtb infection. These cells are hyporesponsive to T cell receptor (TCR)-mediated signaling but, like NK cells, can mount robust CD16-mediated cytotoxic responses. These CD8+ γδ T cells comprise a highly focused TCR repertoire, with clonotypes that are Mycobacterium specific but not phosphoantigen reactive. Using multiparametric single-cell pseudo-time trajectory analysis, we identified the differentiation paths that these CD8+ γδ T cells follow to develop into effectors in this infection state. Last, we found that circulating CD8+ γδ T cells also expand in other chronic inflammatory conditions, including cardiovascular disease and cancer, suggesting that persistent antigenic exposure may drive similar γδ T cell effector programs and differentiation fates.
Assuntos
Linfócitos Intraepiteliais , Mycobacterium tuberculosis , Tuberculose , Humanos , Adolescente , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T CD8-PositivosRESUMO
Host-associated bacteria and fungi, comprising the microbiota, are critical to host health. In the airways, the composition and diversity of the mucosal microbiota of patients are associated with airway health status. However, the relationship between airway microbiota and respiratory inflammation is not well-understood. Chronic rhinosinusitis (CRS) is a complex disease that affects up to 14% of the US population. Previous studies have shown decreased microbial diversity in CRS patients and enrichment of either Staphylococcus aureus or Pseudomonas aeruginosa. Although bacterial community composition is variable across CRS patients, Malassezia is a dominant fungal genus in the upper airways of the majority of healthy and CRS subjects. We hypothesize that distinct bacterial-fungal interactions differentially influence host mucosal immune response. Thus, we investigated in vitro and in vivo interactions between Malassezia sympodialis, P. aeruginosa, and S. aureus. The in vitro interactions were evaluated using the modified Kirby-Bauer Assay, Crystal Violet assay for biofilm, and FISH. A pilot murine model of acute sinusitis was used to investigate relationships with the host immune response. S. aureus and P. aeruginosa were intranasally instilled in the presence or absence of M. sympodialis (n = 66 total mice; 3-5/group). Changes in the microbiota were determined using 16S rRNA gene sequencing and host immune response was measured using quantitative real-time PCR (qRT-PCR). In vitro, only late stage planktonic P. aeruginosa and its biofilms inhibited M. sympodialis. Co-infection of mice with M. sympodialis and P. aeruginosa or S. aureus differently influenced the immune response. In co-infected mice, we demonstrate different expression of fungal sensing (Dectin-1), allergic responses (IL-5, and IL-13) and inflammation (IL-10, and IL-17) in murine sinus depending on the bacterial species that co-infected with M. sympodialis (p < 0.05). The pilot results suggest that species-specific interactions in airway-associated microbiota may be implicated driving immune responses. The understanding of the role of bacterial-fungal interactions in CRS will contribute to development of novel therapies toward manipulation of the airway microbiota.