Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 73(1): 1-21, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33791809

RESUMO

OBJECTIVES: The genus Ferulago belonging to the family Apiaceae is a flora widely distributed in Central Asia and the Mediterranean and used in folk medicine. It is administered as a sedative, tonic, digestive, aphrodisiac, also as a treatment for intestinal worms and haemorrhoids. Herein, we reported a review on phytochemistry and its biological activities reported from 1990 up to early 2020. All the information and reported studies concerning Ferulago plants were summarized from the library and digital databases (e.g. Scopus, Medline, Scielo, ScienceDirect, SciFinder and Google Scholar). KEY FINDINGS: The phytochemical investigations of Ferulago species revealed the presence of coumarins as the main bioactive compounds, including daucane derivatives, sesquiterpenes aryl esters, phenol derivatives, flavonoids and essential oils. Moreover, the therapeutic potentials of the pure compounds isolated from the genus Ferulago possess promising properties namely anticholinesterase, antimicrobial, anticoagulant, antileishmanial, antioxidant, antibacterial and antiproliferative. SUMMARY: Today, significant advances in phytochemical and biological activity studies of different Ferulago species have been revealed. The traditional uses and reported biological results could be correlated via the chemical characterization of these plants. All these data will support the biologists in the elucidation of the biological mechanisms of these plants.


Assuntos
Apiaceae/química , Compostos Fitoquímicos/farmacologia , Fitoterapia , Extratos Vegetais , Biodiversidade , Cumarínicos/análise , Cumarínicos/farmacologia , Etnofarmacologia , Óleos Voláteis/análise , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sesquiterpenos/análise , Sesquiterpenos/farmacologia
2.
Insects ; 11(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759701

RESUMO

Stingless bee honey (SBH) is an astounding 'miracle liquid' with countless medicinal properties for various diseases such as gastroenteritis, cataracts, as well as for wound-healing. However, knowledge regarding it is still rather scarce. Henceforth, it is intriguing for us to contemplate on the less-studied stingless bee and its honey in particular. First and foremost, the antimicrobial ability of honey from eight different stingless bee species was tested to further proven its health benefit. Homotrigona fimbriata honey showed the highest antimicrobial activity with inhibition against five bacteria; Serratia marcescens, Escherichia coli, Bacillus subtilis, Alcaligenes faecalis and Staphylococcus aureus. The next aim of our study is to characterize their honey bacterial community via the use of 16S rRNA amplicon sequencing technology. A total of eight bacterial phyla, 71 families, 155 genera and 70 species were identified from our study and two of the stingless bee species honey were determined to have the highest bacterial diversity compared to other six stingless bee species, namely Heterotrigona erythrogastra and Tetrigona melanoleuca. Furthermost, Lactobacillus malefermentans was thought to be the native dominant bacteria of SBH due to its predominant presence throughout all studied species. The aforementioned SBH's antimicrobial results and characterization study of its bacterial diversity are hoped to carve the pathway towards extending its probiotic ability into our everyday lives.

3.
Iran J Biotechnol ; 18(4): e2566, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34056024

RESUMO

BACKGROUND: Rice tungro disease (RTD) is a viral disease mainly affecting rice in Asia. RTD caused by Rice tungro bacilliform virus and Rice tungro spherical virus. To date, there are only 5 RTSV isolates have been reported. OBJECTIVES: In this study, we aimed to report the complete nucleotide sequence of Malaysian isolate of Rice tungro spherical virus Seberang Perai (RTSV-SP) for the first time. RTSV-SP was characterized and its evolutionary relationship with previously reported Indian and Philippines isolates were elucidated. MATERIALS AND METHODS: RTSV-SP isolate was isolated from a recent outbreak in a paddy field in Seberang Perai zone of Malaysia. Its complete genome was amplified by RT-PCR, cloned and sequenced. RESULTS: Sequence analysis indicated that the genome of RTSV-SP consisted of 12,173 nucleotides (nt). Comparative analysis of 6 complete genome sequences using Clustal Omega showed that Seberang Perai isolate shared the highest nucleotide identity (96.04%) with Philippine-A isolate, except that the sORF-2 of RTSV-SP is shorter than RTSV Philippine-A by 27 amino acid residues. RTSV-SP found to cluster in Southeast Asia (SEA) group based on the whole genome sequence phylogenetic analysis using MEGA X software. CONCLUSIONS: Phylogenetic classification of RTSV isolates based on the complete nucleotide sequences showed more distinctive clustering pattern with the addition of RTSV-SP whole genome to the available isolates. Present study described the isolation and molecular characterization of RTSV-SP.

4.
J Genet Genomics ; 43(6): 393-404, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27312010

RESUMO

Compartmentation via filamentation has recently emerged as a novel mechanism for metabolic regulation. In order to identify filament-forming metabolic enzymes systematically, we performed a genome-wide screening of all strains available from an open reading frame-GFP collection in Saccharomyces cerevisiae. We discovered nine novel filament-forming proteins and also confirmed those identified previously. From the 4159 strains, we found 23 proteins, mostly metabolic enzymes, which are capable of forming filaments in vivo. In silico protein-protein interaction analysis suggests that these filament-forming proteins can be clustered into several groups, including translational initiation machinery and glucose and nitrogen metabolic pathways. Using glutamine-utilising enzymes as examples, we found that the culture conditions affect the occurrence and length of the metabolic filaments. Furthermore, we found that two CTP synthases (Ura7p and Ura8p) and two asparagine synthetases (Asn1p and Asn2p) form filaments both in the cytoplasm and in the nucleus. Live imaging analyses suggest that metabolic filaments undergo sub-diffusion. Taken together, our genome-wide screening identifies additional filament-forming proteins in S. cerevisiae and suggests that filamentation of metabolic enzymes is more general than currently appreciated.


Assuntos
Citoesqueleto/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Núcleo Celular/metabolismo , Genômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA