Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(20): 13834-13848, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34585576

RESUMO

From early April 2020, wildfires raged in the highly contaminated areas around the Chernobyl nuclear power plant (CNPP), Ukraine. For about 4 weeks, the fires spread around and into the Chernobyl exclusion zone (CEZ) and came within a few kilometers of both the CNPP and radioactive waste storage facilities. Wildfires occurred on several occasions throughout the month of April. They were extinguished, but weather conditions and the spread of fires by airborne embers and smoldering fires led to new fires starting at different locations of the CEZ. The forest fires were only completely under control at the beginning of May, thanks to the tireless and incessant work of the firefighters and a period of sustained precipitation. In total, 0.7-1.2 TBq 137Cs were released into the atmosphere. Smoke plumes partly spread south and west and contributed to the detection of airborne 137Cs over the Ukrainian territory and as far away as Western Europe. The increase in airborne 137Cs ranged from several hundred µBq·m-3 in northern Ukraine to trace levels of a few µBq·m-3 or even within the usual background level in other European countries. Dispersion modeling determined the plume arrival time and was helpful in the assessment of the possible increase in airborne 137Cs concentrations in Europe. Detections of airborne 90Sr (emission estimate 345-612 GBq) and Pu (up to 75 GBq, mostly 241Pu) were reported from the CEZ. Americium-241 represented only 1.4% of the total source term corresponding to the studied anthropogenic radionuclides but would have contributed up to 80% of the inhalation dose.


Assuntos
Poluentes Radioativos do Ar , Acidente Nuclear de Chernobyl , Incêndios , Incêndios Florestais , Poluentes Radioativos do Ar/análise , Radioisótopos de Césio/análise , Europa (Continente) , Ucrânia
2.
J Environ Radioact ; 262: 107159, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003253

RESUMO

The SAUNA III represent the next generation of the SAUNA systems designed for detection of low levels of radioactive xenon in the atmosphere, with the main purpose of detecting underground nuclear explosions. The system automatically collects, processes and measures 40 m3 atmospheric samples every 6 h, increasing both the sensitivity and time resolution as compared the systems currently in use. The higher sensitive increases the number of detections, especially for samples were more than one isotope of xenon are detected. This improves the understanding of the background and the possibility to screen out signal from civilian sources. The increased time resolution of the new system also provides a more detailed picture of the plumes, especially important for near-by sources. The design of the system as well as data from the first two years of operation are presented.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Banho a Vapor , Radioisótopos de Xenônio/análise , Explosões , Poluentes Radioativos do Ar/análise , Xenônio
3.
J Environ Radioact ; 261: 107136, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36796185

RESUMO

We introduce a new concept in radioxenon detection - the radioxenon Array, defined as a system where air sampling and activity measurement is performed at multiple locations, using measurement units that are less sensitive, but on the other hand less costly, and easier to install and operate, compared to current state-of-the-art radioxenon systems. The inter-unit distance in the Array is typically hundreds of kilometres. Using synthetic nuclear explosions together with a parametrized measurement system model, we argue that, when such measurement units are combined into an Array, the aggregated verification performance (detection, location, and characterization) can be high. The concept has been realized by developing a measurement unit named SAUNA QB, and the world's first radioxenon Array is now operating in Sweden. The operational principles and performance of the SAUNA QB and the Array is described, and examples of first measured data are presented, indicating a measurement performance according to expectations.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Banho a Vapor , Poluentes Radioativos do Ar/análise , Radioisótopos de Xenônio/análise , Suécia
4.
J Environ Radioact ; 240: 106761, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34755607

RESUMO

A high throughput system for processing and detection of low levels of radioxenon in soil gas samples has been developed. Processing and analysis of sub-soil noble gas samples puts high demands on the gas separation part of the system since the samples might contain high levels of Rn, CO2 as well as other gases. The gas process is optimized to remove all CO2, H2O and Rn with a high recovery yield of the xenon in the sample to ensure a high sensitivity even for small samples. The system is designed to handle multiple samples per day with a high level of automation and sample traceability to be suitable for use in an on-site inspection (OSI) an important component in the verification of the Comprehensive Nuclear Test Ban Treaty. To ensure a rapid deployment the system could be pre-installed in a flight container.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Banho a Vapor , Poluentes Radioativos do Ar/análise , Gases , Solo , Radioisótopos de Xenônio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA