Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(21): 11836-11842, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398372

RESUMO

Systematic mappings of protein interactome networks have provided invaluable functional information for numerous model organisms. Here we develop PCR-mediated Linkage of barcoded Adapters To nucleic acid Elements for sequencing (PLATE-seq) that serves as a general tool to rapidly sequence thousands of DNA elements. We validate its utility by generating the ORFeome for Oryza sativa covering 2,300 genes and constructing a high-quality protein-protein interactome map consisting of 322 interactions between 289 proteins, expanding the known interactions in rice by roughly 50%. Our work paves the way for high-throughput profiling of protein-protein interactions in a wide range of organisms.


Assuntos
Fases de Leitura Aberta/genética , Oryza/genética , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Breed Sci ; 71(3): 344-353, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34776741

RESUMO

Lisianthus (Eustoma grandiflorum) is an important floricultural crop cultivated worldwide. Despite its commercial importance, few DNA markers are available for molecular genetic research. In this study, we constructed a genetic linkage map and to detect quantitative trait loci (QTLs) for important agronomic traits of lisianthus. To develop simple sequence repeat (SSR) markers, we used 454-pyrosequencing technology to obtain genomic shotgun sequences and subsequently identified 8263 putative SSRs. A total of 3990 primer pairs were designed in silico and 1189 unique primer pairs were extracted through a BLAST search. Amplification was successful for more than 1000 primer pairs, and ultimately 278 SSR markers exhibited polymorphism between the two lisianthus accessions evaluated. Based on these markers, a genetic linkage map was constructed using a breeding population derived from crosses between the two accessions, for which flowering time differed (>140 days when grown under 20°C). We detected one QTL associated with flowering time (phenotypic variance, 27%; LOD value, 3.7). The SSR marker located at this QTL may account for variation in flowering time among accessions (i.e., three accessions whose nodes of the first flower were over 30 had late-flowering alleles of this QTL).

3.
Breed Sci ; 70(4): 438-448, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32968346

RESUMO

As prickles cause labour inefficiency during cultivation and scratches on the skin of fruits during transportation, they are considered undesirable traits of eggplant (Solanum melongena L.). Because the molecular basis of prickle emergence has not been entirely revealed in plants, we mapped an eggplant semi-dominant Prickle (Pl) gene locus, which causes the absence of prickles, on chromosome 6 of a linkage map of the F2 population derived from crossing the no-prickly cultivar 'Togenashi-senryo-nigo' and the prickly line LS1934. By performing synteny mapping with tomato, the genomic region corresponding to the eggplant Pl locus was identified. Through bacterial artificial chromosome (BAC) screening, positive BAC clones and the contig sequence that harbour the Pl locus in the prickly eggplant genome were revealed. The BAC contig length was 133 kb, and it contained 16 predicted genes. Among them, a characteristic 0.5-kb insertion/deletion was detected. As the 0.5-kb insertion was commonly identified with the prickly phenotype worldwide, a primer pair that amplifies the insertion/deletion could be used for marker-assisted selection of the no-prickly phenotype. Such findings contribute to map-based-cloning of the Pl gene and the understanding of gene function, ultimately providing new insights into the regulatory molecular mechanisms underlying prickle emergence in plants.

4.
BMC Plant Biol ; 19(1): 132, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961541

RESUMO

BACKGROUND: The mechanism underlying the interaction between host plant and host-selective toxin (HST)-producing Alternaria alternata during infection is of particular interest for sustainable crop production. Alternaria blotch of apple (Malus × domestica Borkh.) caused by A. alternata apple pathotype is a major disease particularly in East Asia, which is the largest producer of apples globally. A single dominant gene, Alt, controls the susceptibility of the apple cultivar 'Delicious' to Alternaria blotch. In this study, we fine mapped the Alt locus and characterized three potential candidate genes. RESULTS: We used 797 F1 individuals derived from 15 crosses between apple accessions susceptible (Alt/alt) and resistant (alt/alt) to Alternaria blotch to construct physical and genetic maps of the Alt locus located on the top of chromosome 11. Susceptible accessions were derived from 'Delicious.' To fine map the Alt locus, we constructed a BAC library of 'Starking Delicious,' a sport of 'Delicious,' and used graphical genotyping to delimit the Alt locus to a region of 43 kb. Three genes predicted within the candidate Alt region were potentially involved in plant defense response, among which the gene encoding a coiled coil-nucleotide binding-leucine rich repeat (CC-NB-LRR) type disease resistance protein was the most promising. Moreover, a 12-bp insertion was uniquely identified in the 5' untranslated region of the Alt-associated allele of this gene, the presence or absence of which co-segregated with the susceptibility or resistance to A. alternata apple pathotype, respectively, among 43 tested cultivars including old ones and founders of modern apple breeding. CONCLUSION: A disease resistance protein has been suggested as a determinant of susceptibility/resistance to HST-producing A. alternata for the first time. Our finding provides new insight into the mechanism of HST-mediated disease control used by A. alternata against host plants.


Assuntos
Alternaria/fisiologia , Resistência à Doença/genética , Malus/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Biblioteca Gênica , Proteínas de Repetições Ricas em Leucina , Malus/imunologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas/genética , Proteínas/metabolismo
5.
Breed Sci ; 69(1): 19-29, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31086480

RESUMO

Cryptomeria japonica is a major forestry tree species in Japan. Male sterility of the species is caused by a recessive gene, which shows dysfunction of pollen development and results in no dispersed pollen. Because the pollen of C. japonica induces pollinosis, breeding of pollen-free C. japonica is desired. In this study, single nucleotide polymorphism (SNP) markers located at 1.78 and 0.58 cM to a male sterility locus (MS1) were identified from an analysis of RNA-Seq and RAD-Seq, respectively. SNPs closely linked to MS1 were first scanned by a method similar to MutMap, where a type of index was calculated to measure the strength of the linkage between a marker sequence and MS1. Linkage analysis of selected SNP markers confirmed a higher efficiency of the current method to construct a partial map around MS1. Allele-specific PCR primer pair for the most closely linked SNP with MS1 was developed as a codominant marker, and visualization of the PCR products on an agarose gel enabled rapid screening of male sterile C. japonica. The allele-specific primers developed in this study would be useful for establishing the selection of male sterile C. japonica.

6.
BMC Genomics ; 18(1): 683, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28870156

RESUMO

BACKGROUND: Chrysanthemum morifolium is one of the most economically valuable ornamental plants worldwide. Chrysanthemum is an allohexaploid plant with a large genome that is commercially propagated by vegetative reproduction. New cultivars with different floral traits, such as color, morphology, and scent, have been generated mainly by classical cross-breeding and mutation breeding. However, only limited genetic resources and their genome information are available for the generation of new floral traits. RESULTS: To obtain useful information about molecular bases for floral traits of chrysanthemums, we read expressed sequence tags (ESTs) of chrysanthemums by high-throughput sequencing using the 454 pyrosequencing technology. We constructed normalized cDNA libraries, consisting of full-length, 3'-UTR, and 5'-UTR cDNAs derived from various tissues of chrysanthemums. These libraries produced a total number of 3,772,677 high-quality reads, which were assembled into 213,204 contigs. By comparing the data obtained with those of full genome-sequenced species, we confirmed that our chrysanthemum contig set contained the majority of all expressed genes, which was sufficient for further molecular analysis in chrysanthemums. CONCLUSION: We confirmed that our chrysanthemum EST set (contigs) contained a number of contigs that encoded transcription factors and enzymes involved in pigment and aroma compound metabolism that was comparable to that of other species. This information can serve as an informative resource for identifying genes involved in various biological processes in chrysanthemums. Moreover, the findings of our study will contribute to a better understanding of the floral characteristics of chrysanthemums including the myriad cultivars at the molecular level.


Assuntos
Chrysanthemum/anatomia & histologia , Chrysanthemum/genética , Etiquetas de Sequências Expressas/metabolismo , Flores/anatomia & histologia , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequência de Aminoácidos , Carotenoides/metabolismo , Anotação de Sequência Molecular , Terpenos/metabolismo , Fatores de Transcrição/genética
8.
Plant Physiol ; 170(2): 653-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26668331

RESUMO

We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing.


Assuntos
DNA Ligases/metabolismo , Oryza/enzimologia , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligases/genética , DNA de Plantas/genética , Mutagênese Sítio-Dirigida , Mutação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
9.
J Plant Res ; 129(6): 1109-1126, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27650512

RESUMO

Determining the molecular mechanism of fruit tree architecture is important for tree management and fruit production. An apple mutant 'McIntosh Wijcik', which was discovered as a bud mutation from 'McIntosh', exhibits a columnar growth phenotype that is controlled by a single dominant gene, Co. In this study, the mutation and the Co gene were analyzed. Fine mapping narrowed the Co region to a 101 kb region. Sequence analysis of the Co region and the original wild-type co region identified an insertion mutation of an 8202 bp long terminal repeat (LTR) retroposon in the Co region. Segregation analysis using a DNA marker based on the insertion polymorphism showed that the LTR retroposon was closely associated with the columnar growth phenotype. RNA-seq and RT-PCR analysis identified a promising Co candidate gene (91071-gene) within the Co region that is specifically expressed in 'McIntosh Wijcik' but not in 'McIntosh'. The 91071-gene was located approximately 16 kb downstream of the insertion mutation and is predicted to encode a 2-oxoglutarate-dependent dioxygenase involved in an unknown reaction. Overexpression of the 91071-gene in transgenic tobaccos and apples resulted in phenotypes with short internodes, like columnar apples. These data suggested that the 8202 bp retroposon insertion in 'McIntosh Wijcik' is associated with the short internodes of the columnar growth phenotype via upregulated expression of the adjacent 91071-gene. Furthermore, the DNA marker based on the insertion polymorphism could be useful for the marker-assisted selection of columnar apples.


Assuntos
Dioxigenases/genética , Malus/genética , Mutagênese Insercional/genética , Proteínas de Plantas/genética , Retroelementos/genética , Mapeamento Cromossômico , Dioxigenases/metabolismo , Malus/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Transcriptoma/genética
10.
Breed Sci ; 66(2): 213-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162493

RESUMO

A core collection of Japanese wheat varieties (JWC) consisting of 96 accessions was established based on their passport data and breeding pedigrees. To clarify the molecular basis of the JWC collection, genome-wide single-nucleotide polymorphism (SNP) genotyping was performed using the genotyping-by-sequencing (GBS) approach. Phylogenetic tree and population structure analyses using these SNP data revealed the genetic diversity and relationships among the JWC accessions, classifying them into four groups; "varieties in the Hokkaido area", "modern varieties in the northeast part of Japan", "modern varieties in the southwest part of Japan" and "classical varieties including landraces". This clustering closely reflected the history of wheat breeding in Japan. Furthermore, to demonstrate the utility of the JWC collection, we performed a genome-wide association study (GWAS) for three traits, namely, "days to heading in autumn sowing", "days to heading in spring sowing" and "culm length". We found significantly associated SNP markers with each trait, and some of these were closely linked to known major genes for heading date or culm length on the genetic map. Our study indicates that this JWC collection is a useful set of germplasm for basic and applied research aimed at understanding and utilizing the genetic diversity among Japanese wheat varieties.

11.
Breed Sci ; 66(5): 683-691, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28163584

RESUMO

Satsuma mandarins (Citrus unshiu Marc.) are the predominant cultivated citrus variety in Japan. Clarification of its origin would prove valuable for citrus taxonomy and mandarin breeding programs; however, current information is limited. We applied genome-wide genotyping using a 384 citrus single nucleotide polymorphism (SNP) array and MARCO computer software to investigate the satsuma mandarin parentage. Genotyping data from 206 validated SNPs were obtained to evaluate 67 citrus varieties and lines. A total of five parent-offspring relationships were newly found by MARCO based on the 206 SNP genotypes, indicating that 'Kishuu mikan' type mandarins (Citrus kinokuni hort. ex Tanaka accession 'Kishuu mikan' and 'Nanfengmiju') and 'Kunenbo' type mandarins (Citrus nobilis Lour. var. kunip Tanaka accession 'Kunenbo' and 'Bendiguangju') are possible parents of the satsuma mandarin. Moreover, cleaved amplified polymorphic sequences analysis showed that the genotypes of four regions in chloroplast DNA of 'Kishuu mikan' type mandarins were identical to that of the satsuma mandarin. Considering the historical background, satsuma mandarins may therefore derive from an occasional cross between a 'Kishuu mikan' type mandarin seed parent (derivative or synonym of 'Nanfengmiju') and a 'Kunenbo' type mandarin pollen parent (derivative or synonym of 'Bendiguangju').

12.
Breed Sci ; 66(4): 499-515, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795675

RESUMO

'Fuji' is one of the most popular and highly-produced apple cultivars worldwide, and has been frequently used in breeding programs. The development of genotypic markers for the preferable phenotypes of 'Fuji' is required. Here, we aimed to define the haplotypes of 'Fuji' and find associations between haplotypes and phenotypes of five traits (harvest day, fruit weight, acidity, degree of watercore, and flesh mealiness) by using 115 accessions related to 'Fuji'. Through the re-sequencing of 'Fuji' genome, total of 2,820,759 variants, including single nucleotide polymorphisms (SNPs) and insertions or deletions (indels) were detected between 'Fuji' and 'Golden Delicious' reference genome. We selected mapping-validated 1,014 SNPs, most of which were heterozygous in 'Fuji' and capable of distinguishing alleles inherited from the parents of 'Fuji' (i.e., 'Ralls Janet' and 'Delicious'). We used these SNPs to define the haplotypes of 'Fuji' and trace their inheritance in relatives, which were shown to have an average of 27% of 'Fuji' genome. Analysis of variance (ANOVA) based on 'Fuji' haplotypes identified one quantitative trait loci (QTL) each for harvest time, acidity, degree of watercore, and mealiness. A haplotype from 'Delicious' chr14 was considered to dominantly cause watercore, and one from 'Ralls Janet' chr1 was related to low-mealiness.

13.
Mol Plant Microbe Interact ; 28(3): 333-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25496595

RESUMO

Two strains of Pseudomonas sp., Os17 and St29, were newly isolated from the rhizosphere of rice and potato, respectively, by screening for 2,4-diacetylphloroglucinol producers. These strains were found to be the same species and were the closest to but different from Pseudomonas protegens among the sequenced pseudomonads, based on 16S ribosomal RNA gene and whole-genome analyses. Strain Os17 was as effective a biocontrol agent as reported for P. protegens Cab57, whereas strain St29 was less effective. The whole-genome sequences of these strains were obtained: the genomes are organized into a single circular chromosome with 6,885,464 bp, 63.5% G+C content, and 6,195 coding sequences for strain Os17; and with 6,833,117 bp, 63.3% G+C content, and 6,217 coding sequences for strain St29. Comparative genome analysis of these strains revealed that the complete rhizoxin analog biosynthesis gene cluster (approximately 79 kb) found in the Os17 genome was absent from the St29 genome. In an rzxB mutant, which lacks the polyketide synthase essential for the production of rhizoxin analogs, the growth inhibition activity against fungal and oomycete pathogens and the plant protection efficacy were attenuated compared with those of wild-type Os17. These findings suggest that rhizoxin analogs are important biocontrol factors of this strain.


Assuntos
Cucumis sativus/microbiologia , Genoma Bacteriano/genética , Macrolídeos/metabolismo , Doenças das Plantas/prevenção & controle , Pseudomonas/genética , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibiose , Bacillus/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Agentes de Controle Biológico , Fusarium/efeitos dos fármacos , Genes Reporter , Dados de Sequência Molecular , Família Multigênica , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Floroglucinol/farmacologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Pseudomonas/química , Pseudomonas/metabolismo , Pythium/efeitos dos fármacos , Proteínas Recombinantes de Fusão , Rizosfera , Análise de Sequência de DNA , Especificidade da Espécie
14.
BMC Genomics ; 16: 1014, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26610706

RESUMO

BACKGROUND: Functions of most genes predicted in the soybean genome have not been clarified. A mutant library with a high mutation density would be helpful for functional studies and for identification of novel alleles useful for breeding. Development of cost-effective and high-throughput protocols using next generation sequencing (NGS) technologies is expected to simplify the retrieval of mutants with mutations in genes of interest. RESULTS: To increase the mutation density, seeds of the Japanese elite soybean cultivar Enrei were treated with the chemical mutagen ethyl methanesulfonate (EMS); M2 seeds produced by M1 plants were treated with EMS once again. The resultant library, which consisted of DNA and seeds from 1536 plants, revealed large morphological and physiological variations. Based on whole-genome re-sequencing analysis of 12 mutant lines, the average number of base changes was 12,796 per line. On average, 691 and 35 per line were missense and nonsense mutations, respectively. Two screening strategies for high resolution melting (HRM) analysis and indexed amplicon sequencing were designed to retrieve the mutants; the mutations were confirmed by Sanger sequencing as the final step. In comparison with HRM screening of several genes, indexed amplicon sequencing allows one to scan a longer sequence range and skip screening steps and to know the sequence information of mutation because it uses systematic DNA pooling and the index of NGS reads, which simplifies the discovery of mutants with amino acid substitutions. CONCLUSIONS: A soybean mutant library with a high mutation density was developed. A high mutation density (1 mutation/74 kb) was achieved by repeating the EMS treatment. The mutation density of our library is sufficiently high to obtain a plant in which a gene is nonsense mutated. Thus, our mutant library and the indexed amplicon sequencing will be useful for functional studies of soybean genes and have a potential to yield useful mutant alleles for soybean breeding.


Assuntos
Glycine max/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese/genética , Mutação/genética
15.
BMC Genomics ; 16: 595, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26265254

RESUMO

BACKGROUND: A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat. RESULTS: We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91% of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87% of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B. CONCLUSIONS: We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Mapeamento Físico do Cromossomo/métodos , Triticum/genética , Cromossomos de Plantas , Evolução Molecular , Ordem dos Genes , Rearranjo Gênico , Marcadores Genéticos , Região Organizadora do Nucléolo
16.
Plant Cell Physiol ; 56(1): 116-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378689

RESUMO

Gene targeting (GT) is a technique used to modify endogenous genes in target genomes precisely via homologous recombination (HR). Although GT plants are produced using genetic transformation techniques, if the difference between the endogenous and the modified gene is limited to point mutations, GT crops can be considered equivalent to non-genetically modified mutant crops generated by conventional mutagenesis techniques. However, it is difficult to guarantee the non-incorporation of DNA fragments from Agrobacterium in GT plants created by Agrobacterium-mediated GT despite screening with conventional Southern blot and/or PCR techniques. Here, we report a comprehensive analysis of herbicide-tolerant rice plants generated by inducing point mutations in the rice ALS gene via Agrobacterium-mediated GT. We performed genome comparative genomic hybridization (CGH) array analysis and whole-genome sequencing to evaluate the molecular composition of GT rice plants. Thus far, no integration of Agrobacterium-derived DNA fragments has been detected in GT rice plants. However, >1,000 single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) were found in GT plants. Among these mutations, 20-100 variants might have some effect on expression levels and/or protein function. Information about additive mutations should be useful in clearing out unwanted mutations by backcrossing.


Assuntos
Genoma de Planta/genética , Herbicidas/farmacologia , Oryza/genética , Acetolactato Sintase/genética , Agrobacterium/genética , Hibridização Genômica Comparativa , Produtos Agrícolas , Marcação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/efeitos dos fármacos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Mutação Puntual , Análise de Sequência de DNA
17.
Plant J ; 76(4): 699-708, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980637

RESUMO

Comparative analysis using available genomic resources within closely related species is an effective way to investigate genomic sequence and structural diversity. Rice (Oryza sativa L.) has undergone significant physiological and morphological changes during its domestication and local adaptation. We present a complete bacterial artificial chromosome (BAC) physical map for the aus rice cultivar 'Kasalath', which covers 90% of the sequence of temperate japonica rice cultivar 'Nipponbare'. Examination of physical distances between computational and experimental measurements of 'Kasalath' BAC insert size revealed the presence of more than 500 genomic regions that appear to have significant chromosome structural changes between the two cultivars. In particular, a genomic region on the long arm of 'Kasalath' chromosome 11 carrying a disease-resistance gene cluster was greatly expanded relative to the 'Nipponbare' genome. We also decoded 41.37 Mb of high-quality genomic sequence from 'Kasalath' chromosome 1. Extensive comparisons of chromosome 1 between 'Kasalath' and 'Nipponbare' led to the discovery of 317,843 single-nucleotide polymorphisms (SNPs) and 66,331 insertion/deletion (indel) sites. Nearly two-thirds of the expressed genes on rice chromosome 1 carried natural variations involving SNPs and/or indels that resulted in substitutions, insertions or deletions of amino acids in one cultivar relative to the other. We also observed gain and loss of genes caused by large indels. This study provides an important framework and an invaluable dataset for further understanding of the molecular mechanisms underlying the evolution and functions of the rice genome.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Genoma de Planta , Oryza/genética , Mapeamento Físico do Cromossomo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Variação Genética , Dados de Sequência Molecular
18.
Plant Cell Physiol ; 55(9): 1679-89, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25059584

RESUMO

Soybeans exhibit a nitrogen-fixing symbiosis with soil bacteria of the genera Bradyrhizobium and Ensifer/Sinorhizobium in a unique organ, the root nodule. It is well known that nodulation of soybean is controlled by several host genes referred to as Rj (rj) genes. Among these genes, a dominant allele, Rj4, restricts nodulation with specific bacterial strains such as B. elkanii USDA61 and B. japonicum Is-34. These incompatible strains fail to invade the host epidermal cells as revealed by observations using DsRed-labeled bacteria. Here, we describe the molecular identification of the Rj4 gene by using map-based cloning with several mapping populations. The Rj4 gene encoded a thaumatin-like protein (TLP) that belongs to pathogenesis-related (PR) protein family 5. In rj4/rj4 genotype soybeans and wild soybeans, we found six missense mutations and two consecutive amino acid deletions in the rj4 gene as compared with the Rj4 allele. We also found, using hairy root transformation, that the rj4/rj4 genotype soybeans were fully complemented by the expression of the Rj4 gene. Whereas the expression of many TLPs and other PR proteins is induced by biotic/abiotic stress, Rj4 gene expression appears to be constitutive in roots including root nodules.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Proteínas de Plantas/metabolismo , Simbiose , Sequência de Bases , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Mapeamento Cromossômico , Loci Gênicos/genética , Genótipo , Dados de Sequência Molecular , Fixação de Nitrogênio , Fenótipo , Filogenia , Proteínas de Plantas/genética , Nodulação , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Glycine max/fisiologia , Especificidade da Espécie
19.
Ann Bot ; 113(3): 429-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284817

RESUMO

BACKGROUND AND AIMS: The timing of flowering has a direct impact on successful seed production in plants. Flowering of soybean (Glycine max) is controlled by several E loci, and previous studies identified the genes responsible for the flowering loci E1, E2, E3 and E4. However, natural variation in these genes has not been fully elucidated. The aims of this study were the identification of new alleles, establishment of allele diagnoses, examination of allelic combinations for adaptability, and analysis of the integrated effect of these loci on flowering. METHODS: The sequences of these genes and their flanking regions were determined for 39 accessions by primer walking. Systematic discrimination among alleles was performed using DNA markers. Genotypes at the E1-E4 loci were determined for 63 accessions covering several ecological types using DNA markers and sequencing, and flowering times of these accessions at three sowing times were recorded. KEY RESULTS: A new allele with an insertion of a long interspersed nuclear element (LINE) at the promoter of the E1 locus (e1-re) was identified. Insertion and deletion of 36 bases in the eighth intron (E2-in and E2-dl) were observed at the E2 locus. Systematic discrimination among the alleles at the E1-E3 loci was achieved using PCR-based markers. Allelic combinations at the E1-E4 loci were found to be associated with ecological types, and about 62-66 % of variation of flowering time could be attributed to these loci. CONCLUSIONS: The study advances understanding of the combined roles of the E1-E4 loci in flowering and geographic adaptation, and suggests the existence of unidentified genes for flowering in soybean.


Assuntos
Regulação da Expressão Gênica de Plantas , Variação Genética , Glycine max/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Adaptação Fisiológica , Alelos , Sequência de Bases , Mapeamento Cromossômico , Flores/genética , Flores/fisiologia , Loci Gênicos/genética , Marcadores Genéticos/genética , Genótipo , Haplótipos , Dados de Sequência Molecular , Fotoperíodo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Sementes/genética , Sementes/fisiologia , Alinhamento de Sequência , Análise de Sequência de DNA , Glycine max/fisiologia , Fatores de Tempo
20.
BMC Genomics ; 14: 464, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23837716

RESUMO

BACKGROUND: The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM). DESCRIPTION: KONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers. CONCLUSIONS: KONAGAbase provides DBM comprehensive transcriptomic and draft genomic sequences with useful annotation information with easy-to-use web interfaces, which helps researchers to efficiently search for target sequences such as insect resistance-related genes. KONAGAbase will be continuously updated and additional genomic/transcriptomic resources and analysis tools will be provided for further efficient analysis of the mechanism of insecticide resistance and the development of effective insecticides with a novel mode of action for DBM.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genômica , Mariposas/genética , Animais , Gráficos por Computador , Internet , Dados de Sequência Molecular , Especificidade de Órgãos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA