Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R620-R628, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35470697

RESUMO

Sympathetic transduction of blood pressure (BP) is correlated negatively with resting muscle sympathetic nerve activity (MSNA) in cross-sectional data, but the acute effects of increasing MSNA are unclear. Sixteen (4 female) healthy adults (26 ± 3 years) underwent continuous measurement of heart rate, BP, and MSNA at rest and during graded lower body negative pressure (LBNP) at -10, -20, and -30 mmHg. Sympathetic transduction of BP was quantified in the time (signal averaging) and frequency (MSNA-BP gain) domains. The proportions of MSNA bursts firing within each tertile of BP were calculated. As expected, LBNP increased MSNA burst frequency (P < 0.01) and burst amplitude (P < 0.02), although the proportions of MSNA bursts firing across each BP tertile remained stable (all P > 0.44). The MSNA-diastolic BP low-frequency transfer function gain (P = 0.25) was unchanged during LBNP; the spectral coherence was increased (P = 0.03). Signal-averaged sympathetic transduction of diastolic BP was unchanged (from 2.1 ± 1.0 at rest to 2.4 ± 1.5, 2.2 ± 1.3, and 2.3 ± 1.4 mmHg; P = 0.43) during LBNP, but diastolic BP responses following nonburst cardiac cycles progressively decreased (from -0.8 ± 0.4 at rest to -1.0 ± 0.6, -1.2 ± 0.6, and -1.6 ± 0.9 mmHg; P < 0.01). As a result, the difference between MSNA burst and nonburst diastolic BP responses was increased (from 2.9 ± 1.4 at rest to 3.4 ± 1.9, 3.4 ± 1.9, and 3.9 ± 2.1 mmHg; P < 0.01). In conclusion, acute increases in MSNA using LBNP did not alter traditional signal-averaged or frequency-domain measures of sympathetic transduction of BP or the proportion of MSNA bursts firing at different BP levels. The factors that determine changes in the firing of MSNA bursts relative to oscillations in BP require further investigation.


Assuntos
Pressão Negativa da Região Corporal Inferior , Músculo Esquelético , Adulto , Pressão Sanguínea/fisiologia , Estudos Transversais , Feminino , Frequência Cardíaca/fisiologia , Humanos , Músculo Esquelético/fisiologia , Sistema Nervoso Simpático
2.
Am J Physiol Heart Circ Physiol ; 321(4): H798-H806, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506224

RESUMO

Signal-averaged sympathetic transduction of blood pressure (BP) is inversely related to resting muscle sympathetic nerve activity (MSNA) burst frequency in healthy cohorts. Whether this represents a physiological compensatory adaptation or a methodological limitation, remains unclear. The current analysis aimed to determine the contribution of methodological limitations by evaluating the dependency of MSNA transduction at different levels of absolute BP. Thirty-six healthy participants (27 ± 7 yr, 9 females) underwent resting measures of beat-to-beat heart rate, BP, and muscle sympathetic nerve activity (MSNA). Tertiles of mean arterial pressure (MAP) were computed for each participant to identify cardiac cycles occurring below, around, and above the MAP operating pressure (OP). Changes in hemodynamic variables were computed across 15 cardiac cycles within each MAP tertile to quantify sympathetic transduction. MAP increased irrespective of sympathetic activity when initiated below the OP, but with MSNA bursts provoking larger rises (3.0 ± 0.9 vs. 2.1 ± 0.7 mmHg; P < 0.01). MAP decreased irrespective of sympathetic activity when initiated above the OP, but with MSNA bursts attenuating the drop (-1.3 ± 1.1 vs. -3.1 ± 1.2 mmHg; P < 0.01). In participants with low versus high resting MSNA (12 ± 4 vs. 32 ± 10 bursts/min), sympathetic transduction of MAP was not different when initiated by bursts below (3.2 ± 1.0 vs. 2.8 ± 0.9 mmHg; P = 0.26) and above the OP (-1.0 ± 1.3 vs. -1.6 ± 0.8 mmHg; P = 0.08); however, low resting MSNA was associated with a smaller proportion of MSNA bursts firing above the OP (15 ± 5 vs. 22 ± 5%; P < 0.01). The present analyses demonstrate that the signal-averaging technique for calculating sympathetic transduction of BP is influenced by the timing of an MSNA burst relative to cyclic oscillations in BP.NEW & NOTEWORTHY The current signal-averaging technique for calculating sympathetic transduction of blood pressure does not consider the arterial pressure at which each muscle sympathetic burst occurs. A burst firing when mean arterial pressure is above the operating pressure was associated with a decrease in blood pressure. Thus, individuals with higher muscle sympathetic nerve activity demonstrate a reduced sympathetic transduction owing to the weighted contribution of more sympathetic bursts at higher levels of arterial pressure.


Assuntos
Pressão Arterial , Sistema Cardiovascular/inervação , Músculo Esquelético/inervação , Descanso , Sistema Nervoso Simpático/fisiologia , Adulto , Determinação da Pressão Arterial , Impedância Elétrica , Eletrodiagnóstico , Feminino , Humanos , Masculino , Fotopletismografia , Fatores de Tempo , Adulto Jovem
3.
Med Sci Sports Exerc ; 55(9): 1660-1671, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37017549

RESUMO

PURPOSE: Exercise blood pressure (BP) responses are thought to be determined by relative exercise intensity (percent maximal voluntary contraction (MVC) strength). However, cross-sectional studies report that during a static contraction, higher absolute force is associated with greater BP responses to relative intensity exercise and subsequent muscle metaboreflex activation with postexercise circulatory occlusion (PECO). We hypothesized that a bout of unaccustomed eccentric exercise would reduce knee extensor MVC and subsequently attenuate BP responses to PECO. METHODS: Continuous BP, heart rate, muscle oxygenation, and knee extensor electromyography were recorded in 21 young healthy individuals (female, n = 10) during 2 min of 20% MVC static knee extension exercise and 2 min of PECO, performed before and 24 h after 300 maximal knee extensor eccentric contractions to cause exercise-induced muscle weakness. As a control, 14 participants repeated the eccentric exercise 4 wks later to test whether BP responses were altered when exercise-induced muscle weakness was attenuated via the protective effects of the repeated bout effect. RESULTS: Eccentric exercise reduced MVC in all participants (144 ± 43 vs 110 ± 34 N·m, P < 0.0001). BP responses to matched relative intensity static exercise (lower absolute force) were unchanged after eccentric exercise ( P > 0.99) but were attenuated during PECO (systolic BP: 18 ± 10 vs 12 ± 9 mm Hg, P = 0.02). Exercise-induced muscle weakness modulated the deoxygenated hemoglobin response to static exercise (64% ± 22% vs 46% ± 22%, P = 0.04). When repeated after 4 wks, exercise-induced weakness after eccentric exercise was attenuated (-21.6% ± 14.3% vs -9.3 ± 9.7, P = 0.0002) and BP responses to PECO were not different from control values (all, P > 0.96). CONCLUSIONS: BP responses to muscle metaboreflex activation, but not exercise, are attenuated by exercise-induced muscle weakness, indicating a contribution of absolute exercise intensity on muscle metaboreflex activation.


Assuntos
Sistema Cardiovascular , Músculo Esquelético , Humanos , Feminino , Músculo Esquelético/fisiologia , Pressão Sanguínea , Estudos Transversais , Debilidade Muscular/etiologia , Contração Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA