Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(10): 2219-2237.e29, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172566

RESUMO

The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Complexos Multiproteicos , Humanos , Endossomos/metabolismo , Transporte Proteico , Proteínas/metabolismo , Complexos Multiproteicos/metabolismo
2.
J Med Genet ; 60(4): 359-367, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36113987

RESUMO

PURPOSE: The Retriever subunit VPS35L is the third responsible gene for Ritscher-Schinzel syndrome (RSS) after WASHC5 and CCDC22. To date, only one pair of siblings have been reported and their condition was significantly more severe than typical RSS. This study aimed to understand the clinical spectrum and underlying molecular mechanism in VPS35L-associated RSS. METHODS: We report three new patients with biallelic VPS35L variants. Biochemical and cellular analyses were performed to elucidate disease aetiology. RESULTS: In addition to typical features of RSS, we confirmed hypercholesterolaemia, hypogammaglobulinaemia and intestinal lymphangiectasia as novel complications of VPS35L-associated RSS. The latter two complications as well as proteinuria have not been reported in patients with CCDC22 and WASHC5 variants. One patient showed a severe phenotype and the other two were milder. Cells established from patients with the milder phenotypes showed relatively higher VPS35L protein expression. Cellular analysis found VPS35L ablation decreased the cell surface level of lipoprotein receptor-related protein 1 and low-density lipoprotein receptor, resulting in reduced low-density lipoprotein cellular uptake. CONCLUSION: VPS35L-associated RSS is a distinct clinical entity with diverse phenotype and severity, with a possible molecular mechanism of hypercholesterolaemia. These findings provide new insight into the essential and distinctive role of Retriever in human development.


Assuntos
Anormalidades Múltiplas , Síndrome de Dandy-Walker , Comunicação Interatrial , Hipercolesterolemia , Humanos , Anormalidades Múltiplas/genética , Síndrome de Dandy-Walker/genética , Comunicação Interatrial/genética
3.
Genet Med ; 24(6): 1227-1237, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35300924

RESUMO

PURPOSE: This study aimed to describe the phenotypic and molecular characteristics of ARCN1-related syndrome. METHODS: Patients with ARCN1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. RESULTS: In total, we identified 14 cases of ARCN1-related syndrome, (9 pediatrics, and 5 fetal cases from 3 families). The clinical features these newly identified cases were compared to 6 previously reported cases for a total of 20 cases. Intrauterine growth restriction, micrognathia, and short stature were present in all patients. Other common features included prematurity (11/15, 73.3%), developmental delay (10/14, 71.4%), genitourinary malformations in males (6/8, 75%), and microcephaly (12/15, 80%). Novel features of ARCN1-related syndrome included transient liver dysfunction and specific glycosylation abnormalities during illness, giant cell hepatitis, hepatoblastoma, cataracts, and lethal skeletal manifestations. Developmental delay was seen in 73% of patients, but only 3 patients had intellectual disability, which is less common than previously reported. CONCLUSION: ARCN1-related syndrome presents with a wide clinical spectrum ranging from a severe embryonic lethal syndrome to a mild syndrome with intrauterine growth restriction, micrognathia, and short stature without intellectual disability. Patients with ARCN1-related syndrome should be monitored for liver dysfunction during illness, cataracts, and hepatoblastoma. Additional research to further define the phenotypic spectrum and possible genotype-phenotype correlations are required.


Assuntos
Catarata , Nanismo , Hepatoblastoma , Deficiência Intelectual , Neoplasias Hepáticas , Micrognatismo , Criança , Feminino , Retardo do Crescimento Fetal/genética , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Síndrome
4.
J Hum Genet ; 66(5): 491-498, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33130828

RESUMO

CUL3 forms Cullin-Ring ubiquitin ligases (CRL) with Ring-box protein and BTB-adaptor proteins. A variety of BTB-adaptor proteins have been reported to interact with the N-terminus of CUL3, which makes it possible to recognize various substrates for degradation. Regarding the association of CUL3 with neurodevelopmental disorders, a recent study reported three patients with global developmental delay, who carried de novo variants in CUL3. Here, we describe a novel de novo CUL3 variant (c.158G > A, p.Ser53Asn) identified in a patient with global developmental delay, who presented some novel dysmorphic features, including macrocephaly, characteristic facial features, and cutis marmorata. Immunoprecipitation and immunoblot analyses identified significantly weaker binding ability to some BTB proteins in CUL3-S53N compared to wild-type. Interestingly, label-free quantification proteomics analysis of samples immunoprecipitated by CUL3-S53N showed a significantly decreased interaction with some BTB proteins, while almost equal interaction or significantly increased interaction was observed with other BTB proteins. The binding between CUL3 and BTB proteins is essential for CRL substrate recognition, and alteration of their interaction is thought to result in the quantitative alteration in substrate proteins. It is possible that the difference of dysmorphic features between the present case and previously reported cases is caused by the distinctive effect of each CUL3 variant on substrate proteins. The clinical information of the present case will expand the picture of CUL3-related global developmental disorders, and subsequent cell biological analysis of the novel mutation will provide insight into the underlying molecular mechanism of how CUL3 pathogenic variants cause neurological disorders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Domínio BTB-POZ , Proteínas Culina/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Mutação Puntual , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Culina/metabolismo , Face/anormalidades , Estudos de Associação Genética , Heterogeneidade Genética , Células HEK293 , Heterozigoto , Humanos , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Megalencefalia/genética , Fenótipo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/metabolismo , Dermatopatias Vasculares/genética , Sequenciamento do Exoma
5.
Am J Med Genet A ; 185(1): 282-285, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084202

RESUMO

The NSUN2 gene encodes a tRNA cytosine methyltransferase that functions in the maturation of leucyl tRNA (Leu) (CAA) precursors, which is crucial for the anticodon-codon pairing and correct translation of mRNA. Biallelic loss of function variants in NSUN2 are known to cause moderate to severe intellectual disability. Microcephaly, postnatal growth retardation, and dysmorphic facial features are common complications in this genetic disorder, and delayed puberty is occasionally observed. Here, we report four individuals, two sets of siblings, with biallelic loss-of-function variants in the NSUN2 gene. The first set of siblings have compound heterozygous frameshift variants: c.546_547insCT, p.Met183Leufs*13; c.1583del, p.Pro528Hisfs*19, and the other siblings carry a homozygous frameshift variant: c.1269dup, p.Val424Cysfs*14. In addition to previously reported clinical features, the first set of siblings showed novel complications of juvenile cataract and chronic nephritis. The other siblings showed hypomyelination and simplified gyral pattern in neuroimaging. NSUN2-related intellectual disability is a very rare condition, and less than 20 cases have been reported previously. Juvenile cataract, chronic nephritis, and brain anomaly shown in the present patients have not been previously described. Our report suggests clinical diversity of NSUN2-related intellectual disability.


Assuntos
Catarata/diagnóstico , Deficiência Intelectual/diagnóstico , Metiltransferases/genética , Nefrite/diagnóstico , Adolescente , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Catarata/complicações , Catarata/genética , Catarata/patologia , Criança , Pré-Escolar , Feminino , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Nefrite/complicações , Nefrite/genética , Nefrite/patologia , Fenótipo
6.
J Med Genet ; 57(4): 245-253, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31712251

RESUMO

BACKGROUND: 3C/Ritscher-Schinzel syndrome is characterised by congenital cranio-cerebello-cardiac dysplasia, where CCDC22 and WASHC5 are accepted as the causative genes. In combination with the retromer or retriever complex, these genes play a role in endosomal membrane protein recycling. We aimed to identify the gene abnormality responsible for the pathogenicity in siblings with a 3C/Ritscher-Schinzel-like syndrome, displaying cranio-cerebello-cardiac dysplasia, coloboma, microphthalmia, chondrodysplasia punctata and complicated skeletal malformation. METHODS: Exome sequencing was performed to identify pathogenic variants. Cellular biological analyses and generation of knockout mice were carried out to elucidate the gene function and pathophysiological significance of the identified variants. RESULTS: We identified compound heterozygous pathogenic variants (c.1097dup; p.Cys366Trpfs*28 and c.2755G>A; p.Ala919Thr) in the VPS35L gene, which encodes a core protein of the retriever complex. The identified missense variant lacked the ability to form the retriever complex, and the frameshift variant induced non-sense-mediated mRNA decay, thereby confirming biallelic loss of function of VPS35L. In addition, VPS35L knockout cells showed decreased autophagic function in nutrient-rich and starvation conditions, as well as following treatment with Torin 1. We also generated Vps35l-/- mice and demonstrated that they were embryonic lethal at an early stage, between E7.5 and E10.5. CONCLUSIONS: Our results suggest that biallelic loss-of-function variants in VPS35L underlies 3C/Ritscher-Schinzel-like syndrome. Furthermore, VPS35L is necessary for autophagic function and essential for early embryonic development. The data presented here provide a new insight into the critical role of the retriever complex in fetal development.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/metabolismo , Anormalidades Craniofaciais/genética , Síndrome de Dandy-Walker/genética , Predisposição Genética para Doença , Comunicação Interatrial/genética , Proteínas de Transporte Vesicular/genética , Anormalidades Múltiplas/patologia , Animais , Cerebelo/patologia , Anormalidades Craniofaciais/patologia , Síndrome de Dandy-Walker/patologia , Feminino , Comunicação Interatrial/patologia , Humanos , Mutação com Perda de Função/genética , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto/genética , Naftiridinas/farmacologia , Fenótipo , Gravidez , Estabilidade de RNA/genética
7.
J Med Genet ; 56(6): 388-395, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30573562

RESUMO

BACKGROUND: In this study, we aimed to identify the gene abnormality responsible for pathogenicity in an individual with an undiagnosed neurodevelopmental disorder with megalencephaly, ventriculomegaly, hypoplastic corpus callosum, intellectual disability, polydactyly and neuroblastoma. We then explored the underlying molecular mechanism. METHODS: Trio-based, whole-exome sequencing was performed to identify disease-causing gene mutation. Biochemical and cell biological analyses were carried out to elucidate the pathophysiological significance of the identified gene mutation. RESULTS: We identified a heterozygous missense mutation (c.173C>T; p.Thr58Met) in the MYCN gene, at the Thr58 phosphorylation site essential for ubiquitination and subsequent MYCN degradation. The mutant MYCN (MYCN-T58M) was non-phosphorylatable at Thr58 and subsequently accumulated in cells and appeared to induce CCND1 and CCND2 expression in neuronal progenitor and stem cells in vitro. Overexpression of Mycn mimicking the p.Thr58Met mutation also promoted neuronal cell proliferation, and affected neuronal cell migration during corticogenesis in mouse embryos. CONCLUSIONS: We identified a de novo c.173C>T mutation in MYCN which leads to stabilisation and accumulation of the MYCN protein, leading to prolonged CCND1 and CCND2 expression. This may promote neurogenesis in the developing cerebral cortex, leading to megalencephaly. While loss-of-function mutations in MYCN are known to cause Feingold syndrome, this is the first report of a germline gain-of-function mutation in MYCN identified in a patient with a novel megalencephaly syndrome similar to, but distinct from, CCND2-related megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. The data obtained here provide new insight into the critical role of MYCN in brain development, as well as the consequences of MYCN defects.


Assuntos
Mutação com Ganho de Função , Estudos de Associação Genética , Predisposição Genética para Doença , Megalencefalia/diagnóstico , Megalencefalia/genética , Proteína Proto-Oncogênica N-Myc/genética , Adolescente , Alelos , Animais , Encéfalo/anormalidades , Análise Mutacional de DNA , Modelos Animais de Doenças , Fácies , Genótipo , Células HEK293 , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Linhagem , Fenótipo , Radiografia , Síndrome , Sequenciamento do Exoma
8.
J Hum Genet ; 64(7): 665-671, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31004103

RESUMO

Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive disorder caused by abnormalities in the gene PLP1. Most females harboring heterozygous PLP1 abnormalities are basically asymptomatic. However, as a result of abnormal patterns of X-chromosome inactivation, it is possible for some female carriers to be symptomatic. Whole-exome sequencing of a female patient with unknown spastic paraplegia was performed to obtain a molecular diagnosis. As a result, a de novo heterozygous single-nucleotide deletion in PLP1 [NM_000533.5(PLP1_v001):c.783del; p.Thr262Leufs*20] was identified. RNA sequencing was performed in a patient-derived lymphoblastoid cell line, confirming mono-allelic expression of the mutated allele and abnormal inactivation of the wild-type allele. The patient-derived lymphoblastoid cell line was then treated with VX680 or 5azadC, which resulted in restored expression of the wild-type allele. These two agents thus have the potential to reverse inappropriately-skewed inactivation of the X-chromosome.


Assuntos
Mutação da Fase de Leitura , Proteína Proteolipídica de Mielina/genética , Paraplegia/genética , Doença de Pelizaeus-Merzbacher/genética , Alelos , Linhagem Celular , Criança , Cromossomos Humanos X/genética , Cromossomos Humanos X/metabolismo , Decitabina/farmacologia , Feminino , Humanos , Doença de Pelizaeus-Merzbacher/patologia , Doença de Pelizaeus-Merzbacher/terapia , Piperazinas/farmacologia , Sequenciamento do Exoma
9.
Front Oncol ; 14: 1417607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884091

RESUMO

Somatic mutations in MYCN have been identified across various tumors, playing pivotal roles in tumorigenesis, tumor progression, and unfavorable prognoses. Despite its established notoriety as an oncogenic driver, there is a growing interest in exploring the involvement of MYCN in human development. While MYCN variants have traditionally been associated with Feingold syndrome type 1, recent discoveries highlight gain-of-function variants, specifically p.(Thr58Met) and p.(Pro60Leu), as the cause for megalencephaly-polydactyly syndrome. The elucidation of cellular and murine analytical data from both loss-of-function (Feingold syndrome model) and gain-of-function models (megalencephaly-polydactyly syndrome model) is significantly contributing to a comprehensive understanding of the physiological role of MYCN in human development and pathogenesis. This review discusses the MYCN's functional implications for human development by reviewing the clinical characteristics of these distinct syndromes, Feingold syndrome, and megalencephaly-polydactyly syndrome, providing valuable insights into the understanding of pathophysiological backgrounds of other syndromes associated with the MYCN pathway and the overall comprehension of MYCN's role in human development.

10.
Nat Commun ; 15(1): 7180, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39168982

RESUMO

Commander is a multiprotein complex that orchestrates endosomal recycling of integral cargo proteins and is essential for normal development. While the structure of this complex has recently been described, how cargo proteins are selected for Commander-mediated recycling remains unclear. Here we identify the mechanism through which the unstructured carboxy-terminal tail of the cargo adaptor sorting nexin-17 (SNX17) directly binds to the Retriever sub-complex of Commander. SNX17 adopts an autoinhibited conformation where its carboxy-terminal tail occupies the cargo binding groove. Competitive cargo binding overcomes this autoinhibition, promoting SNX17 endosomal residency and the release of the tail for Retriever association. Furthermore, our study establishes the central importance of SNX17-Retriever association in the handover of integrin and lipoprotein receptor cargoes into pre-existing endosomal retrieval sub-domains. In describing the principal mechanism of cargo entry into the Commander recycling pathway we provide key insight into the function and regulation of this evolutionary conserved sorting pathway.


Assuntos
Endossomos , Transporte Proteico , Nexinas de Classificação , Endossomos/metabolismo , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Humanos , Ligação Proteica , Células HeLa , Integrinas/metabolismo
11.
HGG Adv ; 4(4): 100238, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37710961

RESUMO

MYCN, a member of the MYC proto-oncogene family, regulates cell growth and proliferation. Somatic mutations of MYCN are identified in various tumors, and germline loss-of-function variants are responsible for Feingold syndrome, characterized by microcephaly. In contrast, one megalencephalic patient with a gain-of-function variant in MYCN, p.Thr58Met, has been reported, and additional patients and pathophysiological analysis are required to establish the disease entity. Herein, we report two unrelated megalencephalic patients with polydactyly harboring MYCN variants of p.Pro60Leu and Thr58Met, along with the analysis of gain-of-function and loss-of-function Mycn mouse models. Functional analyses for MYCN-Pro60Leu and MYCN-Thr58Met revealed decreased phosphorylation at Thr58, which reduced protein degradation mediated by FBXW7 ubiquitin ligase. The gain-of-function mouse model recapitulated the human phenotypes of megalencephaly and polydactyly, while brain analyses revealed excess proliferation of intermediate neural precursors during neurogenesis, which we determined to be the pathomechanism underlying megalencephaly. Interestingly, the kidney and female reproductive tract exhibited overt morphological anomalies, possibly as a result of excess proliferation during organogenesis. In conclusion, we confirm an MYCN gain-of-function-induced megalencephaly-polydactyly syndrome, which shows a mirror phenotype of Feingold syndrome, and reveal that MYCN plays a crucial proliferative role, not only in the context of tumorigenesis, but also organogenesis.


Assuntos
Pálpebras/anormalidades , Deficiência Intelectual , Deformidades Congênitas dos Membros , Megalencefalia , Microcefalia , Polidactilia , Fístula Traqueoesofágica , Camundongos , Animais , Humanos , Feminino , Microcefalia/genética , Mutação com Ganho de Função , Proteína Proto-Oncogênica N-Myc/genética , Polidactilia/genética , Fenótipo , Megalencefalia/genética
12.
Int Heart J ; 53(4): 261-2, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22878807

RESUMO

A 58-year-old male with a history of prior myocardial infarction, hypertension, and dyslipidemia was admitted due to deteriorating exertional angina. A bare metal stent (Multilink plus™, GUIDANT Corporation, Santa Clara, CA, USA) had been implanted into the proximal left anterior descending artery because of ST-elevation myocardial infarction 7 years earlier. Optical coherence tomography (OCT) showed a disruption of the atherosclerotic neointima overlying the stent. Intravascular imaging studies and pathological studies have shown that neointima within a bare-metal stent often transform into atherosclerotic tissue during an extended period of time. In the current report, OCT demonstrated that a disruption of the atherosclerotic neointima has the potential to cause the development of unstable clinical features. OCT examinations therefore help to understand the pathogenesis of acute coronary syndrome after stent implantation.


Assuntos
Aterosclerose/etiologia , Neointima/complicações , Stents/efeitos adversos , Angina Pectoris/etiologia , Reestenose Coronária/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Ruptura Espontânea , Tomografia de Coerência Óptica
13.
Bone Rep ; 17: 101626, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36217348

RESUMO

Hypophosphatasia (HPP), a genetic disorder characterized by decreased tissue-nonspecific alkaline phosphatase (TNSALP) activity, is caused by loss-of-function mutations in the ALPL gene, which encodes TNSALP. The most frequent pathogenic variant in Japanese patients with HPP is a frameshift mutation in the ALPL gene, c.1559delT, and its carrier frequency is reported to be one in 480 in the Japanese population. We report the cases of two Japanese children with HPP who had a heterozygous c.1559delT variant in the ALPL gene. One case (involving a neonate) exhibited respiratory insufficiency associated with vitamin B6 dependent convulsions, significant defective mineralization similar to the severe form of HPP, and extremely low ALP activity. Enzyme replacement therapy (ERT) using asfotase alfa promptly improved her respiratory insufficiency, bone mineralization, and maintained her motor development during infancy. The second case involved a 10-year-old boy who demonstrated diffuse musculoskeletal pain and weakness that progressively disturbed mobility. Although he showed no bony lesions, the clinical symptoms and biochemical abnormalities were compatible with childhood HPP. ERT successfully relieved the severe generalized pain and significantly improved motor function.

14.
Sci Rep ; 12(1): 14589, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028527

RESUMO

Recently, whole-exome sequencing (WES) has been used for genetic diagnoses of patients who remain otherwise undiagnosed. WES was performed in 177 Japanese patients with undiagnosed conditions who were referred to the Tokai regional branch of the Initiative on Rare and Undiagnosed Diseases (IRUD) (TOKAI-IRUD). This study included only patients who had not previously received genome-wide testing. Review meetings with specialists in various medical fields were held to evaluate the genetic diagnosis in each case, which was based on the guidelines of the American College of Medical Genetics and Genomics. WES identified diagnostic single-nucleotide variants in 66 patients and copy number variants (CNVs) in 11 patients. Additionally, a patient was diagnosed with Angelman syndrome with a complex clinical phenotype upon detection of a paternally derived uniparental disomy (UPD) [upd(15)pat] wherein the patient carried a homozygous DUOX2 p.E520D variant in the UPD region. Functional analysis confirmed that this DUOX2 variant was a loss-of-function missense substitution and the primary cause of congenital hypothyroidism. A significantly higher proportion of genetic diagnoses was achieved compared to previous reports (44%, 78/177 vs. 24-35%, respectively), probably due to detailed discussions and the higher rate of CNV detection.


Assuntos
Exoma , Doenças não Diagnosticadas , Variações do Número de Cópias de DNA , Oxidases Duais , Homozigoto , Humanos , Doenças Raras , Dissomia Uniparental , Sequenciamento do Exoma
15.
Int J Cardiol ; 326: 81-87, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075386

RESUMO

BACKGROUND: A gain-of-function mutation in germline ABL1 causes a syndrome including congenital heart defects. However, the molecular mechanisms of this syndrome remain unknown. In this study, we found a novel ABL1 mutation in a Japanese family with ventricular septal defect, finger contracture, skin abnormalities and failure to thrive, and the molecular mechanisms of these phenotypes were investigated. METHODS AND RESULTS: Whole-exome sequencing on several family members revealed a novel mutation (c.1522A > C, p.I508L) in the tyrosine kinase domain of ABL1, and complete co-segregation with clinical presentations was confirmed in all members. Wild-type and mutant ABL1 were transfected into human embryonic kidney 293 cells for functional analysis. Western blotting confirmed that tyrosine phosphorylation in STAT5, a substrate of ABL1, was enhanced, and the novel mutation was proved to be a gain-of-function mutation. Since this novel mutation in ABL1 enhances tyrosine kinase activity, phosphorylated proteome analysis was used to elucidate the molecular pathology. The proteome analysis showed that phosphorylation in proteins such as UFD1, AXIN1, ATRX, which may be involved in the phenotypes, was enhanced in the mutant group. CONCLUSIONS: The onset of congenital heart defects associated with this syndrome appears to involve a mechanism caused by UFD1 common to 22q.11.2 deletion syndrome. On the other hand, AXIN1 and ATRX may be important in elucidating the mechanisms of other phenotypes, such as finger contracture and failure to thrive. Verification of these hypotheses would lead to further understanding of the pathophysiology and the development of treatment methods.


Assuntos
Comunicação Interventricular , Proteoma , Proteínas Proto-Oncogênicas c-abl/genética , Células Germinativas , Humanos , Mutação , Sequenciamento do Exoma
16.
Mol Genet Genomic Med ; 8(3): e1148, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31975530

RESUMO

BACKGROUND: Achondroplasia (ACH), the most common form of short-limbed skeletal dysplasia, is caused by gain-of-function mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. More than 97% of patients result from a heterozygous p.G380R mutation in the FGFR3 gene. We present here a child who had two de novo variants in the FGFR3 on the same allele, a common p.G380R mutation and a novel p.S378N variant. METHODS: A 3-year-old Japanese girl born from non-consanguineous healthy parents showed more severe clinical and radiological phenotypes than classic ACH, including severe short-limbed short stature with marked ossification defects in the metaphysis and epiphysis, hydrocephalus and cervicomedullary compression due to foramen magnum stenosis, prolonged pulmonary hypoplasia, and significant delay in the gross motor development. Genomic DNA was extracted from the proband and whole-exome sequencing was performed. The variants were subsequently confirmed by Sanger sequencing. RESULTS: Mutation analysis demonstrated that the proband had p.S378N (c.1133G>A) and p.G380R (c.1138G>A) variants in the FGFR3 gene. Both variants were not detected in her parents and therefore considered de novo. An allele-specific PCR was developed in order to determine whether these mutations were on the same allele (cis) or on different alleles (trans). The c.1138G>A mutation was found in the PCR product generated with the primer for the mutant 1133A, but it was not detected in the product with the wild-type 1133G, confirming that p.S378N and p.G380R variants were located on the same allele (cis). CONCLUSION: This is the second case who had two FGFR3 variants in the transmembrane domain on the same allele. The p.S378N variant may provide an additive effect on the activating receptor with the p.G380R mutation and alter the protein function, which could be responsible for the severe phenotype of the present case.


Assuntos
Acondroplasia/genética , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Acondroplasia/patologia , Alelos , Pré-Escolar , Feminino , Humanos , Domínios Proteicos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química
17.
Brain Dev ; 42(3): 298-301, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31899079

RESUMO

Mucolipidosis type IV (MLIV) is a rare lysosomal storage disorder causing severe psychomotor developmental delay and progressive visual impairment. MLIV is an autosomal recessive disease caused by mutations in MCOLN1, which encodes for mucolipin-1. Here, we report a case of a 4-year-old Japanese girl with severe intellectual disability and motor deficits. Brain magnetic resonance imaging showed signal abnormalities in the white matter and thinning of the corpus callosum. Whole-exome sequencing was performed on the proband and her parents, and novel compound heterozygous mutations at c.936_938del (p.Phe313del) and c.1503dupC (p.Ile502Hisfs*106) in MCOLN1 (NM_020533.2) were identified in the proband. Additional biochemical examinations revealed elevated serum gastrin level and iron deficiency anemia, leading to the diagnosis of MLIV. More reports of such pathogenic mutations are expected to broaden the understanding of the channel function of mucolipin-1 and genotype-phenotype correlations.


Assuntos
Corpo Caloso/patologia , Deficiências do Desenvolvimento/genética , Mucolipidoses/genética , Canais de Potencial de Receptor Transitório/genética , Pré-Escolar , Deficiências do Desenvolvimento/etiologia , Feminino , Humanos , Japão , Mucolipidoses/complicações
18.
Brain Dev ; 42(2): 217-221, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837835

RESUMO

FA2H encodes fatty acid 2-hydroxylase, which plays a significant role in maintaining the neuronal myelin sheath. Previous reports have revealed that a FA2H mutation leads to spastic paraplegia, leukodystrophy, and neurodegeneration with brain iron accumulation, collectively referred to as fatty acid hydroxylase-associated neurodegeneration (FAHN). The disease severity of FAHN varies among individual patients and may be explained by the enzyme activity of FA2H mutant proteins. Here we report a 10-year-old Japanese boy with FAHN having novel heterozygous mutations in FA2H. The patient presented with a spastic gait since the age of 5 years and was unable to walk without a cane by the time he was 8 years old. Brain MRI demonstrated a partial thinning of the corpus callosum, slight reduction of cerebellar volume, and posterior dominant periventricular leukodystrophy. Whole exome sequencing revealed two novel missense mutations in FA2H with compound heterozygous inheritance (NM_024306, p.Val149Leu, and p.His260Gln mutations). The enzyme activities of the p.Val149Leu and p.His260Gln variants were 60%-80% and almost 0%, respectively. Our cell-based enzyme assay demonstrated partial functionality for one of the variants, indicating a milder phenotype. However, considered along with previous reports, there was no definite relationship between the disease severity and residual enzyme activity measured using a similar method. Further research is needed to precisely predict the phenotypic severity of this disorder.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso/genética , Oxigenases de Função Mista/genética , Encéfalo/metabolismo , Criança , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Marcha/genética , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico por imagem , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Heterozigoto , Humanos , Japão , Imageamento por Ressonância Magnética , Masculino , Oxigenases de Função Mista/metabolismo , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
19.
PLoS One ; 15(8): e0237814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804975

RESUMO

Schaaf-Yang syndrome (SYS) is a neurodevelopmental disorder caused by truncating variants in the paternal allele of MAGEL2, located in the Prader-Willi critical region, 15q11-q13. Although the phenotypes of SYS overlap those of Prader-Willi syndrome (PWS), including neonatal hypotonia, feeding problems, and developmental delay/intellectual disability, SYS patients show autism spectrum disorder and joint contractures, which are atypical phenotypes for PWS. Therefore, we hypothesized that the truncated Magel2 protein could potentially produce gain-of-function toxic effects. To test the hypothesis, we generated two engineered mouse models; one, an overexpression model that expressed the N-terminal region of Magel2 that was FLAG tagged with a strong ubiquitous promoter, and another, a genome-edited model that carried a truncating variant in Magel2 generated using the CRISPR/Cas9 system. In the overexpression model, all transgenic mice died in the fetal or neonatal period indicating embryonic or neonatal lethality of the transgene. Therefore, overexpression of the truncated Magel2 could show toxic effects. In the genome-edited model, we generated a mouse model carrying a frameshift variant (c.1690_1924del; p(Glu564Serfs*130)) in Magel2. Model mice carrying the frameshift variant in the paternal or maternal allele of Magel2 were termed Magel2P:fs and Magel2M:fs, respectively. The imprinted expression and spatial distribution of truncating Magel2 transcripts in the brain were maintained. Although neonatal Magel2P:fs mice were lighter than wildtype littermates, Magel2P:fs males and females weighed the same as their wildtype littermates by eight and four weeks of age, respectively. Collectively, the overexpression mouse model may recapitulate fetal or neonatal death, which are the severest phenotypes for SYS. In contrast, the genome-edited mouse model maintains genomic imprinting and distribution of truncated Magel2 transcripts in the brain, but only partially recapitulates SYS phenotypes. Therefore, our results imply that simple gain-of-function toxic effects may not explain the patho-mechanism of SYS, but rather suggest a range of effects due to Magel2 variants as in human SYS patients.


Assuntos
Antígenos de Neoplasias/genética , Mutação/genética , Proteínas/genética , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Peso Corporal , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Edição de Genes , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linhagem , Fenótipo , Proteínas/química , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Epilepsy Res ; 164: 106371, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32485575

RESUMO

We report on familial 5 epilepsy patients with autosomal dominant inheritance of a novel heterozygous NUS1 frameshift mutation. All patients had cerebellar ataxia and tremor. Three patients were diagnosed with childhood absence epilepsy, 1 patient with generalized epilepsy, and 1 patient with parkinsonism without epilepsy. Our cases and previously reported cases with deletions of chromosome 6q22 that include NUS1 share these common symptoms. In a cellular experiment, NUS1 mutation led to a substantial reduction of the protein level of NUS1. NUS1 mutation could contribute to epilepsy pathogenesis and also constitute a distinct syndromic entity with cerebellar ataxia and tremor.


Assuntos
Ataxia Cerebelar/genética , Epilepsia Tipo Ausência/genética , Mutação/genética , Receptores de Superfície Celular/genética , Tremor/genética , Epilepsia Generalizada/genética , Feminino , Heterozigoto , Humanos , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA