Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancer Discov ; 9(9): 1306-1323, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31217297

RESUMO

The function of PTEN in the cytoplasm largely depends on its lipid-phosphatase activity, though which it antagonizes the PI3K-AKT oncogenic pathway. However, molecular mechanisms underlying the role of PTEN in the nucleus remain largely elusive. Here, we report that DNA double-strand breaks (DSB) promote PTEN interaction with MDC1 upon ATM-dependent phosphorylation of T/S398-PTEN. Importantly, DNA DSBs enhance NSD2 (MMSET/WHSC1)-mediated dimethylation of PTEN at K349, which is recognized by the tudor domain of 53BP1 to recruit PTEN to DNA-damage sites, governing efficient repair of DSBs partly through dephosphorylation of γH2AX. Of note, inhibiting NSD2-mediated methylation of PTEN, either through expressing methylation-deficient PTEN mutants or through inhibiting NSD2, sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor and DNA-damaging agents in both cell culture and in vivo xenograft models. Therefore, our study provides a novel molecular mechanism for PTEN regulation of DSB repair in a methylation- and protein phosphatase-dependent manner. SIGNIFICANCE: NSD2-mediated dimethylation of PTEN is recognized by the 53BP1 tudor domain to facilitate PTEN recruitment into DNA-damage sites, governing efficient repair of DNA DSBs. Importantly, inhibiting PTEN methylation sensitizes cancer cells to combinatorial treatment with a PI3K inhibitor combined with DNA-damaging agents in both cell culture and in vivo xenograft models.This article is highlighted in the In This Issue feature, p. 1143.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Neoplasias/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Feminino , Células HCT116 , Humanos , Metilação , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/química , Fosforilação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
2.
Nat Genet ; 50(2): 206-218, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335545

RESUMO

Lipids, either endogenously synthesized or exogenous, have been linked to human cancer. Here we found that PML is frequently co-deleted with PTEN in metastatic human prostate cancer (CaP). We demonstrated that conditional inactivation of Pml in the mouse prostate morphs indolent Pten-null tumors into lethal metastatic disease. We identified MAPK reactivation, subsequent hyperactivation of an aberrant SREBP prometastatic lipogenic program, and a distinctive lipidomic profile as key characteristic features of metastatic Pml and Pten double-null CaP. Furthermore, targeting SREBP in vivo by fatostatin blocked both tumor growth and distant metastasis. Importantly, a high-fat diet (HFD) induced lipid accumulation in prostate tumors and was sufficient to drive metastasis in a nonmetastatic Pten-null mouse model of CaP, and an SREBP signature was highly enriched in metastatic human CaP. Thus, our findings uncover a prometastatic lipogenic program and lend direct genetic and experimental support to the notion that a Western HFD can promote metastasis.


Assuntos
Lipogênese/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Células PC-3 , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/genética
3.
Cancer Discov ; 7(4): 424-441, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28174173

RESUMO

BRAF drives tumorigenesis by coordinating the activation of the RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathways governing BRAF kinase activity and protein stability remain undefined. Here, we report that in primary cells with active APCFZR1, APCFZR1 earmarks BRAF for ubiquitination-mediated proteolysis, whereas in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APCFZR1, leading to elevation of a cohort of oncogenic APCFZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APCFZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion cooperates with AKT hyperactivation to transform primary melanocytes, whereas genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant coactivation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis.Significance: FZR1 inhibits BRAF oncogenic functions via both APC-dependent proteolysis and APC-independent disruption of BRAF dimers, whereas hyperactivated ERK and CDK4 reciprocally suppress APCFZR1 E3 ligase activity. Aberrancies in this newly defined signaling network might account for BRAF hyperactivation in human cancers, suggesting that targeting CYCLIN D1/CDK4, alone or in combination with BRAF/MEK inhibition, can be an effective anti-melanoma therapy. Cancer Discov; 7(4); 424-41. ©2017 AACR.See related commentary by Zhang and Bollag, p. 356This article is highlighted in the In This Issue feature, p. 339.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Proteínas Cdh1/genética , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Carcinogênese/genética , Proteínas Cdh1/metabolismo , Linhagem Celular Tumoral , Ciclina D1/genética , Dimerização , Células HeLa , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Complexos Multiproteicos/genética , Fosforilação/genética , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Neuron ; 88(6): 1121-1135, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26687221

RESUMO

Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that 3D mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior.


Assuntos
Comportamento Animal , Imageamento Tridimensional/métodos , Cinésica , Aprendizado de Máquina , Optogenética/métodos , Animais , Simulação por Computador , Imageamento Tridimensional/instrumentação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA