Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(47): e2211637119, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36343219

RESUMO

Cytoplasmic incompatibility (CI) is the most common reproductive manipulation produced by Wolbachia, obligately intracellular alphaproteobacteria that infect approximately half of all insect species. Once infection frequencies within host populations approach 10%, intense CI can drive Wolbachia to near fixation within 10 generations. However, natural selection among Wolbachia variants within individual host populations does not favor enhanced CI. Indeed, variants that do not cause CI but increase host fitness or are more reliably maternally transmitted are expected to spread if infected females remain protected from CI. Nevertheless, approximately half of analyzed Wolbachia infections cause detectable CI. Why? The frequency and persistence of CI are more plausibly explained by preferential spread to new host species (clade selection) rather than by natural selection among variants within host populations. CI-causing Wolbachia lineages preferentially spread into new host species because 1) CI increases equilibrium Wolbachia frequencies within host populations, and 2) CI-causing variants can remain at high frequencies within populations even when conditions change so that initially beneficial Wolbachia infections become harmful. An epidemiological model describing Wolbachia acquisition and loss by host species and the loss of CI-induction within Wolbachia lineages yields simple expressions for the incidence of Wolbachia infections and the fraction of those infections causing CI. Supporting a determinative role for differential interspecific spread in maintaining CI, many Wolbachia infections were recently acquired by their host species, many show evidence for contemporary spatial spread or retreat, and rapid evolution of CI-inducing loci, especially degradation, is common.


Assuntos
Wolbachia , Feminino , Humanos , Wolbachia/genética , Fertilidade , Citoplasma/metabolismo , Reprodução , Seleção Genética , Simbiose
2.
STAR Protoc ; 5(1): 102866, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329880

RESUMO

Cleavage under targets & release using nuclease (CUT&RUN) is a technique for identifying genomic sites where proteins or histone modifications are present in chromatin in permeabilized cells. Here, we present a fluorescence-based protocol to quantitatively titrate CUT&RUN buffer components, for efficient cell permeabilization and retention of target epitopes on chromatin. We describe steps for capturing cells on concanavalin A beads and using a fluorescently labeled secondary antibody to titrate concentrations of digitonin and NaCl in CUT&RUN buffers. We then detail procedures for fluorescence imaging to identify optimal conditions. For complete details on the use and execution of this protocol, please refer to Lerner et al.1.


Assuntos
Anticorpos , Cromatina , Endonucleases , Epitopos , Genômica
3.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895478

RESUMO

During development, H3K9me3 heterochromatin is dynamically rearranged, silencing repeat elements and protein coding genes to restrict cell identity. Enhancer of Rudimentary Homolog (ERH) is an evolutionarily conserved protein originally characterized in fission yeast and recently shown to be required for H3K9me3 maintenance in human fibroblasts, but its function during development remains unknown. Here, we show that ERH is required for proper segregation of the inner cell mass and trophectoderm cell lineages during mouse development by repressing totipotent and alternative lineage programs. During human embryonic stem cell (hESC) differentiation into germ layer lineages, ERH is crucial for silencing naïve and pluripotency genes, transposable elements, and alternative lineage genes. Strikingly, ERH depletion in somatic cells reverts the H3K9me3 landscape to an hESC state and enables naïve and pluripotency gene and transposable element activation during iPSC reprogramming. Our findings reveal a role for ERH in initiation and maintenance of developmentally established gene repression.

4.
Nat Commun ; 15(1): 1761, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409161

RESUMO

Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver. In lineage-traced cells, we assessed the timing of SOX4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, SOX4 directly binds to and closes hepatocyte regulatory sequences via an overlapping motif with HNF4A, a hepatocyte master regulatory transcription factor. Subsequently, SOX4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.


Assuntos
Reprogramação Celular , Cromatina , Animais , Camundongos , Diferenciação Celular/genética , Reprogramação Celular/genética , Metaplasia , Fatores de Transcrição/metabolismo
5.
Cell Rep ; 42(7): 112748, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405916

RESUMO

Pioneer transcription factors interact with nucleosomes to scan silent, compact chromatin, enabling cooperative events that modulate gene activity. While at a subset of sites pioneer factors access chromatin by assisted loading with other transcription factors, the nucleosome-binding properties of pioneer factors enable them to initiate zygotic genome activation, embryonic development, and cellular reprogramming. To better understand nucleosome targeting in vivo, we assess whether pioneer factors FoxA1 and Sox2 target stable or unstable nucleosomes and find that they target DNase-resistant, stable nucleosomes, whereas HNF4A, a non-nucleosome binding factor, targets open, DNase-sensitive chromatin. Despite FOXA1 and SOX2 targeting similar proportions of DNase-resistant chromatin, using single-molecule tracking, we find that FOXA1 uses lower nucleoplasmic diffusion and longer residence times while SOX2 uses higher nucleoplasmic diffusion and shorter residence times to scan compact chromatin, while HNF4 scans compact chromatin much less efficiently. Thus, pioneer factors target compact chromatin through distinct processes.


Assuntos
Cromatina , Fator 3-alfa Nuclear de Hepatócito , Nucleossomos , Fatores de Transcrição SOXB1 , Desoxirribonucleases/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fatores de Transcrição SOXB1/metabolismo
6.
bioRxiv ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824858

RESUMO

Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that Sox4 is sufficient to initiate hepatobiliary metaplasia in the adult liver. In lineage-traced cells, we assessed the timing of Sox4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, Sox4 directly binds to and closes hepatocyte regulatory sequences via a motif it overlaps with Hnf4a, a hepatocyte master regulator. Subsequently, Sox4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA