Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(11): 1901-1911, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36757138

RESUMO

Spinal muscular atrophy (SMA) is a monogenic disease that clinically manifests as severe muscle weakness owing to neurotransmission defects and motoneuron degeneration. Individuals affected by SMA experience neuromuscular weakness that impacts functional activities of daily living. We have used a mouse model of severe SMA (SMNΔ7) to test whether a calcium channel gating modifier (GV-58), alone or in combination with a potassium channel antagonist (3,4-diaminopyridine; 3,4-DAP), can improve neuromuscular function in this mouse model. Bath application of GV-58 alone or in combination with 3,4-DAP significantly restored neuromuscular transmission to control levels in both a mildly vulnerable forearm muscle and a strongly vulnerable trunk muscle in SMNΔ7 mice at postnatal days 10-12. Similarly, acute subcutaneous administration of GV-58 to postnatal day 10 SMNΔ7 mice, alone or in combination with 3,4-DAP, significantly increased a behavioral measure of muscle strength. These data suggest that GV-58 may be a promising treatment candidate that could address deficits in neuromuscular function and strength and that the addition of 3,4-DAP to GV-58 treatment could aid in restoring function in SMA.


Assuntos
Atividades Cotidianas , Atrofia Muscular Espinal , Humanos , Camundongos , Animais , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Neurônios Motores/fisiologia , Músculo Esquelético , Modelos Animais de Doenças , Transmissão Sináptica , Proteína 1 de Sobrevivência do Neurônio Motor
2.
J Neurophysiol ; 129(5): 1259-1277, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37073966

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune-mediated neuromuscular disease thought to be caused by autoantibodies against P/Q-type voltage-gated calcium channels (VGCCs), which attack and reduce the number of VGCCs within transmitter release sites (active zones; AZs) at the neuromuscular junction (NMJ), resulting in neuromuscular weakness. However, patients with LEMS also have antibodies to other neuronal proteins, and about 15% of patients with LEMS are seronegative for antibodies against VGCCs. We hypothesized that a reduction in the number of P/Q-type VGCCs alone is not sufficient to explain LEMS effects on transmitter release. Here, we used a computational model to study a variety of LEMS-mediated effects on AZ organization and transmitter release constrained by electron microscopic, pharmacological, immunohistochemical, voltage imaging, and electrophysiological observations. We show that models of healthy AZs can be modified to predict the transmitter release and short-term facilitation characteristics of LEMS and that in addition to a decrease in the number of AZ VGCCs, disruption in the organization of AZ proteins, a reduction in AZ number, a reduction in the amount of synaptotagmin, and the compensatory expression of L-type channels outside the remaining AZs are important contributors to LEMS-mediated effects on transmitter release. Furthermore, our models predict that antibody-mediated removal of synaptotagmin in combination with disruption in AZ organization alone could mimic LEMS effects without the removal of VGCCs (a seronegative model). Overall, our results suggest that LEMS pathophysiology may be caused by a collection of pathological alterations to AZs at the NMJ, rather than by a simple loss of VGCCs.NEW & NOTEWORTHY We used a computational model of the active zone (AZ) in the mammalian neuromuscular junction to investigate Lambert-Eaton myasthenic syndrome (LEMS) pathophysiology. This model suggests that disruptions in presynaptic active zone organization and protein content (particularly synaptotagmin), beyond the simple removal of presynaptic calcium channels, play an important role in LEMS pathophysiology.


Assuntos
Síndrome Miastênica de Lambert-Eaton , Animais , Humanos , Síndrome Miastênica de Lambert-Eaton/patologia , Canais de Cálcio/metabolismo , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Canais de Cálcio Tipo Q , Sinaptotagminas , Mamíferos/metabolismo
3.
Stroke ; 53(10): e455-e456, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36856316
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA