Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934422

RESUMO

Iron-centered N-heterocyclic carbene compounds have attracted much attention in recent years due to their long-lived excited states with charge transfer (CT) character. Understanding the orbital interactions between the metal and ligand orbitals is of great importance for the rational tuning of the transition metal compound properties, e.g., for future photovoltaic and photocatalytic applications. Here, we investigate a series of iron-centered N-heterocyclic carbene complexes with +2, + 3, and +4 oxidation states of the central iron ion using iron L-edge and nitrogen K-edge X-ray absorption spectroscopy (XAS). The experimental Fe L-edge XAS data were simulated and interpreted through restricted-active space (RAS) and multiplet calculations. The experimental N K-edge XAS is simulated and compared with time-dependent density functional theory (TDDFT) calculations. Through the combination of the complementary Fe L-edge and N K-edge XAS, direct probing of the complex interplay of the metal and ligand character orbitals was possible. The σ-donating and π-accepting capabilities of different ligands are compared, evaluated, and discussed. The results show how X-ray spectroscopy, together with advanced modeling, can be a powerful tool for understanding the complex interplay of metal and ligand.

2.
Angew Chem Int Ed Engl ; 62(44): e202306287, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37519152

RESUMO

Currently, most photosensitizers and catalysts used in the field of artificial photosynthesis are still based on rare earth metals and should thus be utilized as efficiently and economically as possible. While repair of an inactivated catalyst is a potential mitigation strategy, this remains a challenge. State-of-the-art methods are crucial for characterizing reaction products during photocatalysis and repair, and are currently based on invasive analysis techniques limiting real-time access to the involved mechanisms. Herein, we use an innovative in situ technique for detecting both initially evolved hydrogen and after active repair via advanced non-invasive rotational Raman spectroscopy. This facilitates unprecedently accurate monitoring of gaseous reaction products and insight into the mechanism of active repair during light-driven catalysis enabling the identification of relevant mechanistic details along with innovative repair strategies.

3.
J Am Chem Soc ; 143(3): 1307-1312, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33449685

RESUMO

The photofunctionality of the cobalt-hexacarbene complex [Co(III)(PhB(MeIm)3)2]+ (PhB(MeIm)3 = tris(3-methylimidazolin-2-ylidene)(phenyl)borate) has been investigated by time-resolved optical spectroscopy. The complex displays a weak (Φ âˆ¼ 10-4) but remarkably long-lived (τ ∼ 1 µs) orange photoluminescence at 690 nm in solution at room temperature following excitation with wavelengths shorter than 350 nm. The strongly red-shifted emission is assigned from the spectroscopic evidence and quantum chemical calculations as a rare case of luminescence from a metal-centered state in a 3d6 complex. Singlet oxygen quenching supports the assignment of the emitting state as a triplet metal-centered state and underlines its capability of driving excitation energy transfer processes.

4.
J Am Chem Soc ; 142(19): 8565-8569, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32307993

RESUMO

Photoinduced bimolecular charge transfer processes involving the iron(III) N-heterocyclic carbene (FeNHC) photosensitizer [Fe(phtmeimb)2]+ (phtmeimb = phenyltris(3-methyl-imidazolin-2-ylidene)borate) and triethylamine as well as N,N-dimethylaniline donors have been studied using optical spectroscopy. The full photocycle of charge separation and recombination down to ultrashort time scales was studied by investigating the excited-state dynamics up to high quencher concentrations. The unconventional doublet ligand-to-metal charge transfer (2LMCT) photoactive excited state exhibits donor-dependent charge separation rates of up to 1.25 ps-1 that exceed the rates found for typical ruthenium-based systems and are instead more similar to results reported for organic sensitizers. The ultrafast charge transfer probed at high electron donor concentrations outpaces the solvent dynamics and goes beyond the classical Marcus electron transfer regime. Poor photoproduct yields are explained by donor-independent, fast charge recombination with rates of ∼0.2 ps-1, thus inhibiting cage escape and photoproduct formation. This study thus shows that the ultimate bottlenecks for bimolecular photoredox processes involving these FeNHC photosensitizers can only be determined from the ultrafast dynamics of the full photocycle, which is of particular importance when the bimolecular charge transfer processes are not limited by the intrinsic excited-state lifetime of the photosensitizer.


Assuntos
Boratos/química , Elétrons , Etilaminas/química , Compostos Férricos/química , Luz , Fármacos Fotossensibilizantes/química , Estrutura Molecular , Processos Fotoquímicos , Solventes/química
5.
Phys Chem Chem Phys ; 22(16): 9067-9073, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32297625

RESUMO

Iron centered N-heterocyclic carbene (Fe-NHC) complexes have shown long-lived excited states with charge transfer character useful for light harvesting applications. Understanding the nature of the metal-ligand bond is of fundamental importance to rationally tailor the properties of transition metal complexes. The high-energy-resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) has been used to probe the valence orbitals of three carbene complexes, [FeII(bpy)(btz)2](PF6)2 (bpy = 2,2'-bipyridine, btz = 3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene)), [FeIII(btz)3](PF6)3, and [FeIII(phtmeimb)2]PF6 (phtmeimb = [phenyl(tris(3-methylimidazol-2-ylidene))borate]-). The multiconfigurational restrict active space (RAS) approach has been used to simulate the metal K pre-edge X-ray absorption spectroscopy of these carbene complexes, and have reproduced the metal K pre-edge spectral features in terms of relative intensity and peak positions. The evident intensity difference between the FeII and the other two FeIII complexes has been elucidated with different intensity mechanisms in the transition. The smaller splitting between the t2g and eg character peak for [FeIII(btz)3](PF6)3 has been observed in the experimental measurements and been reproduced in the RAS calculations. The results show how the combination of experimental HERFD-XANES measurements and ab initio RAS simulations can give quantitative evaluation of the orbital interactions between metal and ligands for such large and strongly interacting systems and thus allow to understand and predict properties of novel complexes.

6.
Chemistry ; 23(10): 2271-2274, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28067966

RESUMO

The problematic consequences of using silver carbene precursors for the synthesis of NHC-complexes is elucidated with the example of dinuclear Ru-Rh/Ir photocatalysts. The presence of silver in the products is proven and an alternative silver-free synthetic approach successfully implemented. A significant difference in performance in photocatalytic hydrogen evolution reactions of catalysts generated by the different strategies is observed.

7.
Angew Chem Int Ed Engl ; 56(20): 5471-5474, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28247454

RESUMO

We present a proof of concept that ultrafast dynamics combined with photochemical stability information of molecular photocatalysts can be acquired by electrospray ionization mass spectrometry combined with time-resolved femtosecond laser spectroscopy in an ion trap. This pump-probe "fragmentation action spectroscopy" gives straightforward access to information that usually requires high purity compounds and great experimental efforts. Results of gas-phase studies on the electronic dynamics of two supramolecular photocatalysts compare well to previous findings in solution and give further evidence for a directed electron transfer, a key process for photocatalytic hydrogen generation.

8.
Chem Sci ; 14(13): 3569-3579, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37006696

RESUMO

Steady state and ultrafast spectroscopy on [FeIII(phtmeimb)2]PF6 (phtmeimb = phenyl(tris(3-methylimidazol-2-ylidene))borate) was performed over a broad range of temperatures. The intramolecular deactivation dynamics of the luminescent doublet ligand-to-metal charge-transfer (2LMCT) state was established based on Arrhenius analysis, indicating the direct deactivation of the 2LMCT state to the doublet ground state as a key limitation to the lifetime. In selected solvent environments photoinduced disproportionation generating short-lived Fe(iv) and Fe(ii) complex pairs that subsequently undergo bimolecular recombination was observed. The forward charge separation process is found to be temperature-independent with a rate of ∼1 ps-1. Subsequent charge recombination takes place in the inverted Marcus region with an effective barrier of 60 meV (483 cm-1). Overall, the photoinduced intermolecular charge separation efficiently outcompetes the intramolecular deactivation over a broad range of temperatures, highlighting the potential of [FeIII(phtmeimb)2]PF6 to perform photocatalytic bimolecular reactions.

9.
Chem Sci ; 13(32): 9165-9175, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093023

RESUMO

Fe-N-heterocyclic carbene (NHC) complexes attract increasing attention as photosensitisers and photoredox catalysts. Such applications generally rely on sufficiently long excited state lifetimes and efficient bimolecular quenching, which leads to there being few examples of successful usage of Fe-NHC complexes to date. Here, we have employed [Fe(iii)(btz)3]3+ (btz = (3,3'-dimethyl-1,1'-bis(p-tolyl)-4,4'-bis(1,2,3-triazol-5-ylidene))) in the addition of alkyl halides to alkenes and alkynes via visible light-mediated atom transfer radical addition (ATRA). Unlike other Fe-NHC complexes, [Fe(iii/ii)(btz)3]3+/2+ benefits from sizable charge transfer excited state lifetimes ≥0.1 ns in both oxidation states, and the Fe(iii) 2LMCT and Fe(ii) 3MLCT states are strong oxidants and reductants, respectively. The combined reactivity of both excited states enables efficient one-electron reduction of the alkyl halide substrate under green light irradiation. The two-photon mechanism proceeds via reductive quenching of the Fe(iii) 2LMCT state by a sacrificial electron donor and subsequent excitation of the Fe(ii) product to its highly reducing 3MLCT state. This route is shown to be more efficient than the alternative, where oxidative quenching of the less reducing Fe(iii) 2LMCT state by the alkyl halide drives the reaction, in the absence of a sacrificial electron donor.

10.
ChemSusChem ; 15(12): e202200708, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35415957

RESUMO

This work elaborates the effect of dynamic irradiation on light-driven molecular water oxidation to counteract deactivation. It highlights the importance of overall reaction engineering to overcome limiting factors in artificial photosynthesis reactions. Systematic investigation of a homogeneous three-component ruthenium-based water oxidation system revealed significant potential to enhance the overall catalytic efficiency by synchronizing the timescales of photoreaction and mass transport in a capillary flow reactor. The overall activity could be improved by a factor of more than 10 with respect to the turnover number and a factor of 31 referring to the external energy efficiency by controlling the local availability of photons. Detailed insights into the mechanism of light driven water oxidation could be obtained using complementary methods of investigation like Raman, IR, and UV/Vis/emission spectroscopy, unraveling the importance of avoiding high concentrations of excited photosensitizers.


Assuntos
Rutênio , Água , Catálise , Oxirredução , Fotossíntese , Rutênio/química , Água/química
11.
Dalton Trans ; 45(15): 6612-8, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26965197

RESUMO

A new dyad consisting of a Ru(II) chromophore, a tetrapyridophenazine bridging ligand and a Rh(Cp*)Cl catalytic center, [Ru(tbbpy)2(tpphz)Rh(Cp*)Cl]Cl(PF6)2, acts as durable photocatalyst for hydrogen production from water. Catalytic activity is observed for more than 650 hours. Electrochemical investigations reveal that up to two electrons can be transferred to the catalytic center by a thermodynamically favorable intramolecular process, which has so far not been reported for similar tpphz based supramolecular photocatalysts. Additionally, mercury poisoning tests indicate that the new dyad works as a homogeneous photocatalyst.

12.
Dalton Trans ; 43(36): 13683-95, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25100041

RESUMO

Novel photocatalysts based on ruthenium complexes with NHC (N-heterocyclic carbene)-type bridging ligands have been prepared and structurally and photophysically characterised. The identity of the NHC-unit of the bridging ligand was established unambiguously by means of X-ray structural analysis of a heterodinuclear ruthenium-silver complex. The photophysical data indicate ultrafast intersystem crossing into an emissive and a non-emissive triplet excited state after excitation of the ruthenium centre. Exceptionally high luminescence quantum yields of up to 39% and long lifetimes of up to 2 µs are some of the triplet excited state characteristics. Preliminary studies into the visible light driven photocatalytic hydrogen formation show no induction phase and constant turnover frequencies that are independent on the concentration of the photocatalyst. In conclusion this supports the notion of a stable assembly under photocatalytic conditions.


Assuntos
Hidrogênio/química , Luz , Metano/análogos & derivados , Catálise , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Técnicas Eletroquímicas , Compostos Heterocíclicos/química , Ligantes , Metano/química , Conformação Molecular , Piridinas/química , Rutênio/química , Prata/química , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA