Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 147(22)2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33033119

RESUMO

Animal germ cells communicate directly with each other during gametogenesis through intercellular bridges, often called ring canals (RCs), that form as a consequence of incomplete cytokinesis during cell division. Developing germ cells in Drosophila have an additional specialized organelle connecting the cells called the fusome. Ring canals and the fusome are required for fertility in Drosophila females, but little is known about their roles during spermatogenesis. With live imaging, we directly observe the intercellular movement of GFP and a subset of endogenous proteins through RCs during spermatogenesis, from two-cell diploid spermatogonia to clusters of 64 post-meiotic haploid spermatids, demonstrating that RCs are stable and open to intercellular traffic throughout spermatogenesis. Disruption of the fusome, a large cytoplasmic structure that extends through RCs and is important during oogenesis, had no effect on spermatogenesis or male fertility under normal conditions. Our results reveal that male germline RCs allow the sharing of cytoplasmic information that might play a role in quality control surveillance during sperm development.


Assuntos
Citoplasma/metabolismo , Meiose/fisiologia , Espermátides/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Animais , Citoplasma/genética , Drosophila melanogaster , Masculino , Espermátides/citologia , Espermatogônias/citologia
2.
Development ; 146(14)2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31208963

RESUMO

Gametogenesis is dependent on intercellular communication facilitated by stable intercellular bridges connecting developing germ cells. During Drosophila oogenesis, intercellular bridges (referred to as ring canals; RCs) have a dynamic actin cytoskeleton that drives their expansion to a diameter of 10 µm. Although multiple proteins have been identified as components of RCs, we lack a basic understanding of how RC proteins interact together to form and regulate the RC cytoskeleton. Thus, here, we optimized a procedure for proximity-dependent biotinylation in live tissue using the APEX enzyme to interrogate the RC interactome. APEX was fused to four different RC components (RC-APEX baits) and 55 unique high-confidence prey were identified. The RC-APEX baits produced almost entirely distinct interactomes that included both known RC proteins and uncharacterized proteins. A proximity ligation assay was used to validate close-proximity interactions between the RC-APEX baits and their respective prey. Furthermore, an RNA interference screen revealed functional roles for several high-confidence prey genes in RC biology. These findings highlight the utility of enzyme-catalyzed proximity labeling for protein interactome analysis in live tissue and expand our understanding of RC biology.


Assuntos
Comunicação Celular/genética , Células Germinativas/metabolismo , Imagem Molecular/métodos , Oogênese , Mapas de Interação de Proteínas/fisiologia , Coloração e Rotulagem/métodos , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Técnicas Citológicas/métodos , Citoesqueleto/genética , Citoesqueleto/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Drosophila melanogaster/genética , Feminino , Genes Reporter , Junções Intercelulares/fisiologia , Oócitos/metabolismo , Oogênese/genética , Ligação Proteica , Mapas de Interação de Proteínas/genética
3.
Genome ; 59(11): 1049-1061, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27809602

RESUMO

Here, we present a new approach for increasing the rate and lowering the cost of identifying, cataloging, and monitoring global biodiversity. These advances, which we call Closed-Tube Barcoding, are one application of a suite of proven PCR-based technologies invented in our laboratory. Closed-Tube Barcoding builds on and aims to enhance the profoundly important efforts of the International Barcode of Life initiative. Closed-Tube Barcoding promises to be particularly useful when large numbers of small or rare specimens need to be screened and characterized at an affordable price. This approach is also well suited for automation and for use in portable devices.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Animais , Proteínas de Bactérias/genética , Análise por Conglomerados , Biologia Computacional/métodos , RNA Polimerases Dirigidas por DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase/métodos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA