Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35970564

RESUMO

The mitochondrial anchor syntaphilin (SNPH) is a key mitochondrial protein normally expressed in axons to maintain neuronal health by positioning mitochondria along axons for metabolic needs. However, in 2019 we discovered a novel form of excitotoxicity that results when SNPH is misplaced into neuronal dendrites in disease models. A key unanswered question about this SNPH excitotoxicity is the pathologic molecules that trigger misplacement or intrusion of SNPH into dendrites. Here, we identified two different classes of pathologic molecules that interact to trigger dendritic SNPH intrusion. Using primary hippocampal neuronal cultures from mice of either sex, we demonstrated that the pro-inflammatory cytokine IL-1ß interacts with NMDA to trigger SNPH intrusion into dendrites. First, IL-1ß and NMDA each individually triggers dendritic SNPH intrusion. Second, IL-1ß and NMDA do not act independently but interact. Thus, blocking NMDAR by the antagonist MK-801 blocks IL-1ß from triggering dendritic SNPH intrusion. Further, de-coupling the known interaction between IL-1ß and NMDAR by tyrosine inhibitors prevents either IL-1ß or NMDA from triggering dendritic SNPH intrusion. Third, neuronal toxicity caused by IL-1ß or NMDA are strongly ameliorated in SNPH-/- neurons. Taken together, we hypothesize that the known bipartite IL-1ß/NMDAR crosstalk converges to trigger misplacement of SNPH in dendrites as a final common pathway to cause neurodegeneration. Targeting dendritic SNPH in this novel tripartite IL-1ß/NMDAR/SNPH interaction could be a strategic downstream locus for ameliorating neurotoxicity in inflammatory diseases.SIGNIFICANCE STATEMENTThe mitochondrial anchor Syntaphilin (SNPH) is a key mitochondrial protein normally expressed specifically in healthy axons to help position mitochondria along axons to match metabolic needs. In 2019, we discovered that misplacement of SNPH into neuronal dendrites causes a novel form of excitotoxicity in rodent models of multiple sclerosis. A key unanswered question about this new form of dendritic SNPH toxicity concerns pathologic molecules that trigger toxic misplacement of SNPH into dendrites. Here we identified two major categories of pathologic molecules, the pro-inflammatory cytokines and NMDA, that interact and converge to trigger toxic misplacement of SNPH into dendrites. We propose that dendritic mitochondrial anchor provides a novel, single common target for ameliorating diverse inflammatory and excitatory injuries in neurodegenerative diseases.

2.
Sex Transm Dis ; 49(1): 86-89, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34264902

RESUMO

BACKGROUND: Sexually transmitted infection (STI) prevention programs can decrease the economic burden of STIs. Foster youth have higher rates of STIs compared with their peers; however, information on direct costs and indirect costs averted by STI testing, treatment, and counseling among foster youth is lacking. METHODS: This study used data from a comprehensive medical center for foster youth over a 3-year study period from July 2017 to June 2020. Direct and indirect costs averted by testing and treatment of chlamydia, gonorrhea, and syphilis, as well as HIV testing and counseling, were calculated based on formulas developed by the Centers for Disease Control and Prevention and adjusted for inflation. RESULTS: Among the 316 youth who received medical services during this time, 206 were sexually active and tested for STIs and/or HIV. Among 121 positive STI test results, 64.5% (n = 78) were positive for chlamydia, 30.6% (n = 37) were positive for gonorrhea, and 5.0% (n = 6) were positive for syphilis. Treatment was provided to all. Overall, $60,049.68 in direct medical costs and $73,956.36 in indirect costs were averted. CONCLUSIONS: Given the rates of STIs among this population and the economic benefit of STI treatment, it is imperative to continue to provide intensive and comprehensive, individualized sexual health care for foster youth. Traditional care management may miss the opportunity to prevent, identify, and treat STIs that comprehensive wraparound care can achieve. This study suggests that comprehensive wraparound care is a cost-effective way to identify, treat, and prevent STIs among foster youth.


Assuntos
Criança Acolhida , Gonorreia , Infecções por HIV , Infecções Sexualmente Transmissíveis , Sífilis , Adolescente , Redução de Custos , Aconselhamento , Gonorreia/diagnóstico , Gonorreia/epidemiologia , Gonorreia/prevenção & controle , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Humanos , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções Sexualmente Transmissíveis/prevenção & controle , Sífilis/diagnóstico , Sífilis/epidemiologia , Sífilis/prevenção & controle
3.
Gastroenterology ; 158(5): 1433-1449.e27, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31786131

RESUMO

BACKGROUND & AIMS: Prolactin (PRL) signaling is up-regulated in hormone-responsive cancers. The PRL receptor (PRLR) is a class I cytokine receptor that signals via the Janus kinase (JAK)-signal transducer and activator of transcription and mitogen-activated protein kinase pathways to regulate cell proliferation, migration, stem cell features, and apoptosis. Patients with pancreatic ductal adenocarcinoma (PDAC) have high plasma levels of PRL. We investigated whether PRLR signaling contributes to the growth of pancreatic tumors in mice. METHODS: We used immunohistochemical analyses to compare levels of PRL and PRLR in multitumor tissue microarrays. We used structure-based virtual screening and fragment-based drug discovery to identify compounds likely to bind PRLR and interfere with its signaling. Human pancreatic cell lines (AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2), with or without knockdown of PRLR (clustered regularly interspaced short palindromic repeats or small hairpin RNA), were incubated with PRL or penfluridol and analyzed in proliferation and spheroid formation. C57BL/6 mice were given injections of UNKC-6141 cells, with or without knockdown of PRLR, into pancreas, and tumor development was monitored for 4 weeks, with some mice receiving penfluridol treatment for 21 days. Human pancreatic tumor tissues were implanted into interscapular fat pads of NSG mice, and mice were given injections of penfluridol daily for 28 days. Nude mice were given injections of Panc-1 cells, xenograft tumors were grown for 2 weeks, and mice were then given intraperitoneal penfluridol for 35 days. Tumors were collected from mice and analyzed by histology, immunohistochemistry, and immunoblots. RESULTS: Levels of PRLR were increased in PDAC compared with nontumor pancreatic tissues. Incubation of pancreatic cell lines with PRL activated signaling via JAK2-signal transducer and activator of transcription 3 and extracellular signal-regulated kinase, as well as formation of pancospheres and cell migration; these activities were not observed in cells with PRLR knockdown. Pancreatic cancer cells with PRLR knockdown formed significantly smaller tumors in mice. We identified several diphenylbutylpiperidine-class antipsychotic drugs as agents that decreased PRL-induced JAK2 signaling; incubation of pancreatic cancer cells with these compounds reduced their proliferation and formation of panco spheres. Injections of 1 of these compounds, penfluridol, slowed the growth of xenograft tumors in the different mouse models, reducing proliferation and inducing autophagy of the tumor cells. CONCLUSIONS: Levels of PRLR are increased in PDAC, and exposure to PRL increases proliferation and migration of pancreatic cancer cells. Antipsychotic drugs, such as penfluridol, block PRL signaling in pancreatic cancer cells to reduce their proliferation, induce autophagy, and slow the growth of xenograft tumors in mice. These drugs might be tested in patients with PDAC.


Assuntos
Antipsicóticos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Penfluridol/farmacologia , Prolactina/metabolismo , Receptores da Prolactina/antagonistas & inibidores , Animais , Antipsicóticos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Técnicas de Silenciamento de Genes , Humanos , Injeções Intraperitoneais , Janus Quinase 2/metabolismo , Masculino , Camundongos , Pâncreas/patologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Penfluridol/uso terapêutico , Prolactina/sangue , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Brain ; 141(3): 744-761, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373639

RESUMO

Despite the development of newer anti-seizure medications over the past 50 years, 30-40% of patients with epilepsy remain refractory to treatment. One explanation for this lack of progress is that the current screening process is largely biased towards transmembrane channels and receptors, and ignores intracellular proteins and enzymes that might serve as efficacious molecular targets. Here, we report the development of a novel drug screening platform that harnesses the power of zebrafish genetics and combines it with in vivo bioenergetics screening assays to uncover therapeutic agents that improve mitochondrial health in diseased animals. By screening commercially available chemical libraries of approved drugs, for which the molecular targets and pathways are well characterized, we were able to reverse-identify the proteins targeted by efficacious compounds and confirm the physiological roles that they play by utilizing other pharmacological ligands. Indeed, using an 870-compound screen in kcna1-morpholino epileptic zebrafish larvae, we uncovered vorinostat (Zolinza™; suberanilohydroxamic acid, SAHA) as a potent anti-seizure agent. We further demonstrated that vorinostat decreased average daily seizures by ∼60% in epileptic Kcna1-null mice using video-EEG recordings. Given that vorinostat is a broad histone deacetylase (HDAC) inhibitor, we then delineated a specific subset of HDACs, namely HDACs 1 and 3, as potential drug targets for future screening. In summary, we have developed a novel phenotypic, metabolism-based experimental therapeutics platform that can be used to identify new molecular targets for future drug discovery in epilepsy.


Assuntos
Histona Desacetilases/metabolismo , Convulsões/metabolismo , Convulsões/terapia , Animais , Animais Geneticamente Modificados , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Eletrochoque/efeitos adversos , Embrião não Mamífero , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Inibidores de Histona Desacetilases/uso terapêutico , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Camundongos , Morfolinos , Pentilenotetrazol/toxicidade , Desempenho Psicomotor/fisiologia , Convulsões/etiologia , Convulsões/genética , Vorinostat/uso terapêutico , Peixe-Zebra
5.
JAMA ; 321(14): 1391-1399, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30964529

RESUMO

Importance: Data sets linking comprehensive genomic profiling (CGP) to clinical outcomes may accelerate precision medicine. Objective: To assess whether a database that combines EHR-derived clinical data with CGP can identify and extend associations in non-small cell lung cancer (NSCLC). Design, Setting, and Participants: Clinical data from EHRs were linked with CGP results for 28 998 patients from 275 US oncology practices. Among 4064 patients with NSCLC, exploratory associations between tumor genomics and patient characteristics with clinical outcomes were conducted, with data obtained between January 1, 2011, and January 1, 2018. Exposures: Tumor CGP, including presence of a driver alteration (a pathogenic or likely pathogenic alteration in a gene shown to drive tumor growth); tumor mutation burden (TMB), defined as the number of mutations per megabase; and clinical characteristics gathered from EHRs. Main Outcomes and Measures: Overall survival (OS), time receiving therapy, maximal therapy response (as documented by the treating physician in the EHR), and clinical benefit rate (fraction of patients with stable disease, partial response, or complete response) to therapy. Results: Among 4064 patients with NSCLC (median age, 66.0 years; 51.9% female), 3183 (78.3%) had a history of smoking, 3153 (77.6%) had nonsquamous cancer, and 871 (21.4%) had an alteration in EGFR, ALK, or ROS1 (701 [17.2%] with EGFR, 128 [3.1%] with ALK, and 42 [1.0%] with ROS1 alterations). There were 1946 deaths in 7 years. For patients with a driver alteration, improved OS was observed among those treated with (n = 575) vs not treated with (n = 560) targeted therapies (median, 18.6 months [95% CI, 15.2-21.7] vs 11.4 months [95% CI, 9.7-12.5] from advanced diagnosis; P < .001). TMB (in mutations/Mb) was significantly higher among smokers vs nonsmokers (8.7 [IQR, 4.4-14.8] vs 2.6 [IQR, 1.7-5.2]; P < .001) and significantly lower among patients with vs without an alteration in EGFR (3.5 [IQR, 1.76-6.1] vs 7.8 [IQR, 3.5-13.9]; P < .001), ALK (2.1 [IQR, 0.9-4.0] vs 7.0 [IQR, 3.5-13.0]; P < .001), RET (4.6 [IQR, 1.7-8.7] vs 7.0 [IQR, 2.6-13.0]; P = .004), or ROS1 (4.0 [IQR, 1.2-9.6] vs 7.0 [IQR, 2.6-13.0]; P = .03). In patients treated with anti-PD-1/PD-L1 therapies (n = 1290, 31.7%), TMB of 20 or more was significantly associated with improved OS from therapy initiation (16.8 months [95% CI, 11.6-24.9] vs 8.5 months [95% CI, 7.6-9.7]; P < .001), longer time receiving therapy (7.8 months [95% CI, 5.5-11.1] vs 3.3 months [95% CI, 2.8-3.7]; P < .001), and increased clinical benefit rate (80.7% vs 56.7%; P < .001) vs TMB less than 20. Conclusions and Relevance: Among patients with NSCLC included in a longitudinal database of clinical data linked to CGP results from routine care, exploratory analyses replicated previously described associations between clinical and genomic characteristics, between driver mutations and response to targeted therapy, and between TMB and response to immunotherapy. These findings demonstrate the feasibility of creating a clinicogenomic database derived from routine clinical experience and provide support for further research and discovery evaluating this approach in oncology.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Imunoterapia , Neoplasias Pulmonares/genética , Mutação , Idoso , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/terapia , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Genômica , Genótipo , Humanos , Masculino , Registro Médico Coordenado , Pessoa de Meia-Idade , Medicina de Precisão , Receptor de Morte Celular Programada 1/análise
6.
Biophys J ; 114(11): 2717-2731, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874620

RESUMO

Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of heterogeneous multilayered samples without destructively separating individual components before testing.


Assuntos
Elasticidade , Microscopia de Força Atômica , Animais , Aorta/citologia , Aorta/diagnóstico por imagem , Dimetilpolisiloxanos , Análise de Elementos Finitos , Camundongos , Nylons
7.
Stem Cells ; 35(1): 51-60, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27641724

RESUMO

Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60.


Assuntos
Tecnologia , Engenharia Tecidual/métodos , Animais , Humanos , Transdução de Sinais , Alicerces Teciduais/química
8.
J Neurosci ; 36(36): 9454-71, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27605619

RESUMO

UNLABELLED: All tissues are genetically programmed to acquire an optimal size that is defined by total cell number and individual cellular dimensions. The retina contains stereotyped proportions of one glial and six neuronal cell types that are generated in overlapping waves. How multipotent retinal progenitors know when to switch from making one cell type to the next so that appropriate numbers of each cell type are generated is poorly understood. Pten is a phosphatase that controls progenitor cell proliferation and differentiation in several lineages. Here, using a conditional loss-of-function strategy, we found that Pten regulates retinal cell division and is required to produce the full complement of rod photoreceptors and amacrine cells in mouse. We focused on amacrine cell number control, identifying three downstream Pten effector pathways. First, phosphoinositide 3-kinase/Akt signaling is hyperactivated in Pten conditional knock-out (cKO) retinas, and misexpression of constitutively active Akt (Akt-CA) in retinal explants phenocopies the reduction in amacrine cell production observed in Pten cKOs. Second, Akt-CA activates Tgfß signaling in retinal explants, which is a negative feedback pathway for amacrine cell production. Accordingly, Tgfß signaling is elevated in Pten cKO retinas, and epistatic analyses placed Pten downstream of TgfßRII in amacrine cell number control. Finally, Pten regulates Raf/Mek/Erk signaling levels to promote the differentiation of all amacrine cell subtypes, which are each reduced in number in Pten cKOs. Pten is thus a positive regulator of amacrine cell production, acting via multiple downstream pathways, highlighting its diverse actions as a mediator of cell number control. SIGNIFICANCE STATEMENT: Despite the importance of size for optimal organ function, how individual cell types are generated in correct proportions is poorly understood. There are several ways to control cell number, including readouts of organ function (e.g., secreted hormones reach functional levels when enough cells are made) or counting of cell divisions or cell number. The latter applies to the retina, where cell number is regulated by negative feedback signals, which arrest differentiation of particular cell types at threshold levels. Herein, we show that Pten is a critical regulator of amacrine cell number in the retina, acting via multiple downstream pathways. Our studies provide molecular insights into how PTEN loss in humans may lead to uncontrolled cell division in several pathological conditions.


Assuntos
Células Amácrinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Retina , Transdução de Sinais/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Proliferação de Células/genética , Embrião de Mamíferos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt , Retina/citologia , Retina/embriologia , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
9.
J Neurosci ; 35(39): 13430-47, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424889

RESUMO

Imprinted genes are dosage sensitive, and their dysregulated expression is linked to disorders of growth and proliferation, including fetal and postnatal growth restriction. Common sequelae of growth disorders include neurodevelopmental defects, some of which are indirectly related to placental insufficiency. However, several growth-associated imprinted genes are also expressed in the embryonic CNS, in which their aberrant expression may more directly affect neurodevelopment. To test whether growth-associated genes influence neural lineage progression, we focused on the maternally imprinted gene Zac1. In humans, either loss or gain of ZAC1 expression is associated with reduced growth rates and intellectual disability. To test whether increased Zac1 expression directly perturbs neurodevelopment, we misexpressed Zac1 in murine neocortical progenitors. The effects were striking: Zac1 delayed the transition of apical radial glial cells to basal intermediate neuronal progenitors and postponed their subsequent differentiation into neurons. Zac1 misexpression also blocked neuronal migration, with Zac1-overexpressing neurons pausing more frequently and forming fewer neurite branches during the period when locomoting neurons undergo dynamic morphological transitions. Similar, albeit less striking, neuronal migration and morphological defects were observed on Zac1 knockdown, indicating that Zac1 levels must be regulated precisely. Finally, Zac1 controlled neuronal migration by regulating Pac1 transcription, a receptor for the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). Pac1 and Zac1 loss- and gain-of-function presented as phenocopies, and overexpression of Pac1 rescued the Zac1 knockdown neuronal migration phenotype. Thus, dysregulated Zac1 expression has striking consequences on neocortical development, suggesting that misexpression of this transcription factor in the brain in certain growth disorders may contribute to neurocognitive deficits. Significance statement: Altered expression of imprinted genes is linked to cognitive dysfunction and neuropsychological disorders, such as Angelman and Prader-Willi syndromes, and autism spectrum disorder. Mouse models have also revealed the importance of imprinting for brain development, with chimeras generated with parthenogenetic (two maternal chromosomes) or androgenetic (two paternal chromosomes) cells displaying altered brain sizes and cellular defects. Despite these striking phenotypes, only a handful of imprinted genes are known or suspected to regulate brain development (e.g., Dlk1, Peg3, Ube3a, necdin, and Grb10). Herein we show that the maternally imprinted gene Zac1 is a critical regulator of neocortical development. Our studies are relevant because loss of 6q24 maternal imprinting in humans results in elevated ZAC1 expression, which has been associated with neurocognitive defects.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Genes Supressores de Tumor/fisiologia , Neocórtex/citologia , Neurônios/fisiologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Fatores de Transcrição/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/embriologia , Neuritos/fisiologia , Neuritos/ultraestrutura , Neurônios/ultraestrutura , Gravidez , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Fatores de Transcrição/genética
10.
BMC Genomics ; 17 Suppl 3: 435, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27356971

RESUMO

BACKGROUND: A number of researchers have speculated that neurological disorders are mostly due to the interaction of common susceptibility genes with environmental, epigenetic and stochastic factors. Genetic factors such as mutations, insertions, deletions and copy number variations (CNVs) are responsible for only a small subset of cases, suggesting unknown environmental contaminants play a role in triggering neurological disorders like idiopathic autism. Psychoactive pharmaceuticals have been considered as potential environmental contaminants as they are detected in the drinking water at very low concentrations. Preliminary studies in our laboratory identified gene sets associated with neuronal systems and human neurological disorders that were significantly enriched after treating fish brains with psychoactive pharmaceuticals at environmental concentrations. These gene expression inductions were associated with changes in fish behavior. Here, we tested the hypothesis that similar treatments would alter in vitro gene expression associated with neurological disorders (including autism) in human neuronal cells. We differentiated and treated human SK-N-SH neuroblastoma cells with a mixture (fluoxetine, carbamazepine and venlafaxine) and valproate (used as a positive control to induce autism-associated profiles), followed by transcriptome analysis with RNA-Seq approach. RESULTS: We found that psychoactive pharmaceuticals and valproate significantly altered neuronal gene sets associated with human neurological disorders (including autism-associated sets). Moreover, we observed that altered expression profiles in human cells were similar to gene expression profiles previously identified in fish brains. CONCLUSIONS: Psychoactive pharmaceuticals at environmental concentrations altered in vitro gene expression profiles of neuronal growth, development and regulation. These expression patterns were associated with potential neurological disorders including autism, suggested psychoactive pharmaceuticals at environmental concentrations might mimic, aggravate, or induce neurological disorders.


Assuntos
Transtorno Autístico/genética , Poluentes Ambientais/intoxicação , Doenças do Sistema Nervoso/genética , Psicotrópicos/intoxicação , Transcriptoma/efeitos dos fármacos , Animais , Carbamazepina/intoxicação , Linhagem Celular Tumoral , Fluoxetina/intoxicação , Perfilação da Expressão Gênica/métodos , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Transcriptoma/genética , Ácido Valproico/intoxicação , Cloridrato de Venlafaxina/intoxicação
11.
Biochem Biophys Res Commun ; 474(2): 291-295, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27105911

RESUMO

Psychoactive pharmaceuticals have been found as teratogens at clinical dosage during pregnancy. These pharmaceuticals have also been detected in minute (ppb) concentrations in drinking water in the US, and are environmental contaminants that may be complicit in triggering neurological disorders in genetically susceptible individuals. Previous studies have determined that psychoactive pharmaceuticals (fluoxetine, venlafaxine and carbamazepine) at environmentally relevant concentrations enriched sets of genes regulating development and function of the nervous system in fathead minnows. Altered gene sets were also associated with potential neurological disorders, including autism spectrum disorders (ASD). Subsequent in vitro studies indicated that psychoactive pharmaceuticals altered ASD-associated synaptic protein expression and gene expression in human neuronal cells. However, it is unknown if environmentally relevant concentrations of these pharmaceuticals are able to cross biological barriers from mother to fetus, thus potentially posing risks to nervous system development. The main objective of this study was to test whether psychoactive pharmaceuticals (fluoxetine, venlafaxine, and carbamazepine) administered through the drinking water at environmental concentrations to pregnant mice could reach the brain of the developing embryo by crossing intestinal and placental barriers. We addressed this question by adding (2)H-isotope labeled pharmaceuticals to the drinking water of female mice for 20 days (10 pre-and 10 post-conception days), and quantifying (2)H-isotope enrichment signals in the dam liver and brain of developing embryos using isotope ratio mass spectrometry. Significant levels of (2)H enrichment was detected in the brain of embryos and livers of carbamazepine-treated mice but not in those of control dams, or for fluoxetine or venlafaxine application. These results provide the first evidence that carbamazepine in drinking water and at typical environmental concentrations is transmitted from mother to embryo. Our results, combined with previous evidence that carbamazepine may be associated with ASD in infants, warrant the closer examination of psychoactive pharmaceuticals in drinking water and their potential association with neurodevelopmental disorders.


Assuntos
Carbamazepina/farmacocinética , Absorção Intestinal/fisiologia , Exposição Materna , Troca Materno-Fetal/fisiologia , Placenta/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/toxicidade , Encéfalo/embriologia , Encéfalo/metabolismo , Carbamazepina/toxicidade , Feminino , Fluoxetina/farmacocinética , Fluoxetina/toxicidade , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Psicotrópicos/farmacocinética , Psicotrópicos/toxicidade , Cloridrato de Venlafaxina/farmacocinética , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/toxicidade
12.
BMC Microbiol ; 16(1): 138, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27392139

RESUMO

BACKGROUND: Resistance amongst the commensal flora is a serious threat because a very highly populated ecosystem like the gut, may at a later stage, be a source of extra intestinal infections, resistant strains may spread to other host or transfer genetic resistance element to other members of micro-biota including pathogens. This study was carried out to assess fecal colonization by carbapenemase producing Enterobacteriaceae (CPE) and associated risk factors among 100 patients admitted to intensive care unit (ICU). The phenotypic and molecular characterizations of CPE were also included. RESULTS: Colonization with CPE was observed in 6.6 % (8/122) controls. Among ICU patients, fecal carriage of CPE was significantly higher on day 4 (D4) (22 %) as compared to day 1 (D1) (11 %) (p value 0.002). The carbapenemase genes detected included OXA- 48, 181, KPC and NDM-1 with NDM-1 being the predominant carbapenemase in both ICU D1 and D4. Among the 50 CPE isolates, 8 (16 %) were susceptible to meropenem and imipenem (Minimum inhibitory concentration; MIC ≤ 1 mg/L) and all were susceptible to colistin (MIC range 0.125 - 1 mg/L) and tigecycline (MIC range 0.06- 1.5 mg/L). The risk factors associated with CPE carriage were duration of ICU stay, use of ventilator and aminoglycosides. CONCLUSIONS: Prior colonization with CPE could result in their influx and spread in ICU, challenging infection control measures. Exposure to ICU further increases risk of colonization with diverse carbapenemase-producing Enterobacteriaceae. Gut colonization with these strains may be a source of endogenous infection and horizontal transfer of these genes in future.


Assuntos
Proteínas de Bactérias/biossíntese , Enterobacteriaceae/enzimologia , Fezes/química , Fezes/microbiologia , beta-Lactamases/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/transmissão , Microbioma Gastrointestinal , Humanos , Índia , Controle de Infecções , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Fatores de Risco , Centros de Atenção Terciária , beta-Lactamases/genética
13.
Circ Res ; 114(2): e6-17, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24221941

RESUMO

RATIONALE: Regulation of striated muscle contraction is achieved by Ca2+ -dependent steric modulation of myosin cross-bridge cycling on actin by the thin filament troponin-tropomyosin complex. Alterations in the complex can induce contractile dysregulation and disease. For example, mutations between or near residues 112 to 136 of cardiac troponin-T, the crucial TnT1 (N-terminal domain of troponin-T)-tropomyosin-binding region, cause cardiomyopathy. The Drosophila upheld(101) Glu/Lys amino acid substitution lies C-terminally adjacent to this phylogenetically conserved sequence. OBJECTIVE: Using a highly integrative approach, we sought to determine the molecular trigger of upheld(101) myofibrillar degeneration, to evaluate contractile performance in the mutant cardiomyocytes, and to examine the effects of the mutation on the entire Drosophila heart to elucidate regulatory roles for conserved TnT1 regions and provide possible mechanistic insight into cardiac dysfunction. METHODS AND RESULTS: Live video imaging of Drosophila cardiac tubes revealed that the troponin-T mutation prolongs systole and restricts diastolic dimensions of the heart, because of increased numbers of actively cycling myosin cross-bridges. Elevated resting myocardial stiffness, consistent with upheld(101) diastolic dysfunction, was confirmed by an atomic force microscopy-based nanoindentation approach. Direct visualization of mutant thin filaments via electron microscopy and 3-dimensional reconstruction resolved destabilized tropomyosin positioning and aberrantly exposed myosin-binding sites under low Ca2+ conditions. CONCLUSIONS: As a result of troponin-tropomyosin dysinhibition, upheld(101) hearts exhibited cardiac dysfunction and remodeling comparable to that observed during human restrictive cardiomyopathy. Thus, reversal of charged residues about the conserved tropomyosin-binding region of TnT1 may perturb critical intermolecular associations required for proper steric regulation, which likely elicits myopathy in our Drosophila model.


Assuntos
Cardiomiopatias/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Miofibrilas/metabolismo , Troponina T/metabolismo , Disfunção Ventricular/metabolismo , Função Ventricular , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Diástole , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Acoplamento Excitação-Contração , Feminino , Genótipo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Masculino , Microscopia Eletrônica , Microscopia de Vídeo , Dados de Sequência Molecular , Mutação , Miofibrilas/efeitos dos fármacos , Miofibrilas/ultraestrutura , Fenótipo , Sístole , Tropomiosina/metabolismo , Troponina T/genética , Disfunção Ventricular/genética , Disfunção Ventricular/patologia , Disfunção Ventricular/fisiopatologia , Remodelação Ventricular
14.
Lipids Health Dis ; 15(1): 129, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528014

RESUMO

BACKGROUND: Smoking is one of the leading causes of millions of deaths worldwide. During cigarette smoking, most affected and highly exposed cells are the alveolar epithelium and generated oxidative stress in these cells leads to death and damage. Several studies suggested that oxidative stress causes membrane remodeling via Phospholipase A2s but in the case of cigarette smokers, mechanistically study is not yet fully defined. In view of present perspective, we evaluated the involvement of cytosolic phospholipase A2 (cPLA2) IVA as therapeutic target in cigarette smoke induced pathologies in transformed type I and type II alveolar epithelial cells. METHODS: Transformed type I (WI26) and type II (A549) alveolar epithelial cells were used for the present study. Cigarette smoke condensate (CSC) was prepared from most commonly used cigarette (Gold Flake with filter) by the Indian population. CSC-induced molecular changes were evaluated through cell viability using MTT assay, reactive oxygen species (ROS) measurement using 2,7 dichlorodihydrofluorescin diacetate (DCFH-DA), cell membrane integrity using fluorescein diacetate (FDA) and ethidium bromide (EtBr) staining, super oxide dismutase (SOD) levels, cPLA2 activity and molecular involvement of specific cPLA2s at selected 24 h time period. RESULTS: CSC-induced response on both type of epithelial cells shown significantly reduction in cell viability, declined membrane integrity, with differential escalation of ROS levels in the range of 1.5-15 folds and pointedly increased cPLA2 activity (p < 0.05). Likewise, we observed distinction antioxidant potential in these two types of lineages as type I cells had considerably higher SOD levels when compared to type II cells (p < 0.05). Further molecular expression of all cPLA2s increased significantly in a dose dependent manner, specifically cytosolic phospholipase A2 IVA with maximum manifestation of 3.8 folds. Interestingly, CSC-induced ROS levels and cPLA2s expression were relatively higher in A549 cells as compared to WI26 cells. CONCLUSIONS: The present study indicates that among all cPLA2s, specific cPLA2 IVA are the main enzymes involved in cigarette smoke induced anomalies in type I and type II lung epithelial cells and targeting them holds tremendous possibilities in cigarette smoke induced lung pathologies.


Assuntos
Citosol/enzimologia , Pneumopatias/enzimologia , Nicotiana , Fosfolipases A2/análise , Alvéolos Pulmonares/ultraestrutura , Fumaça/efeitos adversos , Células A549 , Linhagem Celular , Células Epiteliais/ultraestrutura , Humanos , Espécies Reativas de Oxigênio/análise
15.
BMC Bioinformatics ; 16 Suppl 7: S3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25952302

RESUMO

BACKGROUND: Most cases of idiopathic autism spectrum disorder (ASD) likely result from unknown environmental triggers in genetically susceptible individuals. These triggers may include maternal exposure of a fetus to minute concentrations of pharmaceuticals, such as carbamazepine (CBZ), venlafaxine (VNX) and fluoxetine (FLX). Unmetabolized pharmaceuticals reach drinking water through a variety of routes, including ineffectively treated sewage. Previous studies in our laboratory examined the extent to which gene sets were enriched in minnow brains treated with pharmaceuticals. Here, we tested the hypothesis that genes in fish brains and human cell cultures, significantly enriched by pharmaceuticals, would have distinct characteristics in an ASD-associated protein interaction network. We accomplished this by comparing these groups using 10 network indices. RESULTS: A network of 7212 proteins and 33,461 interactions was generated. We found that network characteristics for enriched gene sets for particular pharmaceuticals were distinct from each other, and were different from non-enriched ASD gene sets. In particular, genes in fish brains, enriched by CBZ and VNX 1) had higher network importance than that in the overall network, and those enriched by FLX, and 2) were distinct from FLX and non-enriched ASD genes in multivariate network space. Similarly, genes in human cell cultures enriched by pharmaceutical mixtures (at environmental concentrations) and valproate (at clinical dosages) had similar network signatures, and had greater network importance than genes in the overall ASD network. CONCLUSIONS: The results indicate that important gene sets in the ASD network are particularly susceptible to perturbation by pharmaceuticals at environmental concentrations.


Assuntos
Anticonvulsivantes/farmacologia , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Cyprinidae/metabolismo , Poluentes Ambientais/efeitos adversos , Exposição Materna/efeitos adversos , Mapas de Interação de Proteínas/efeitos dos fármacos , Animais , Antidepressivos de Segunda Geração/farmacologia , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/genética , Encéfalo/efeitos dos fármacos , Carbamazepina/farmacologia , Cicloexanóis/farmacologia , Cyprinidae/genética , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ácido Valproico/farmacologia , Cloridrato de Venlafaxina
16.
Mol Carcinog ; 54(12): 1710-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25491779

RESUMO

Melanoma is an aggressive disease with limited therapeutic options. Here, we determined the effects of honokiol (HNK), a biphenolic natural compound on melanoma cells and stemness. HNK significantly inhibited melanoma cell proliferation, viability, clonogenicity and induced autophagy. In addition, HNK significantly inhibited melanosphere formation in a dose dependent manner. Western blot analyses also demonstrated reduction in stem cell markers CD271, CD166, Jarid1b, and ABCB5. We next examined the effect of HNK on Notch signaling, a pathway involved in stem cell self-renewal. Four different Notch receptors exist in cells, which when cleaved by a series of enzymatic reactions catalyzed by Tumor Necrosis Factor-α-Converting Enzyme (TACE) and γ-secretase protein complex, results in the release of the Notch intracellular domain (NICD), which then translocates to the nucleus and induces target gene expression. Western blot analyses demonstrated that in HNK treated cells there is a significant reduction in the expression of cleaved Notch-2. In addition, there was a reduction in the expression of downstream target proteins, Hes-1 and cyclin D1. Moreover, HNK treatment suppressed the expression of TACE and γ-secretase complex proteins in melanoma cells. To confirm that suppression of Notch-2 activation is critical for HNK activity, we overexpressed NICD1, NICD2, and performed HNK treatment. NICD2, but not NICD1, partially restored the expression of Hes-1 and cyclin D1, and increased melanosphere formation. Taken together, these data suggest that HNK is a potent inhibitor of melanoma cells, in part, through the targeting of melanoma stem cells by suppressing Notch-2 signaling.


Assuntos
Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptor Notch2/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/metabolismo , Autofagia/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição HES-1
17.
Am J Public Health ; 105(7): 1394-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25973833

RESUMO

OBJECTIVES: We investigated the development of and service utilization at Supporting Positive Opportunities with Teens (SPOT)-a community-based health and social service facility in St. Louis, Missouri, for youths that focuses on increasing HIV and sexually transmitted infection (STI) testing. METHODS: We identified the US-based, co-located youth health and social service models that guided the establishment of the SPOT. We analyzed the first 5 years (2008-2013) of service delivery and utilization data. RESULTS: During the study period, the SPOT provided services for 8233 youths in 37,480 visits. The 5 most utilized services included HIV and STI screening, food, transportation, contraception, and case management. A total of 9812 gonorrhea and chlamydia screenings revealed 1379 (14.1%) cases of chlamydia and 437 (4.5%) cases of gonorrhea, and 5703 HIV tests revealed 59 HIV infections (1.0%); 93.0% of patients found to have an STI were treated within a 5-day window. CONCLUSIONS: Co-locating health and social services in informal community settings attracts high-risk youths to utilize services and can prove instrumental in reducing STI burden in this population.


Assuntos
Sorodiagnóstico da AIDS/métodos , Serviços de Saúde do Adolescente/estatística & dados numéricos , Sorodiagnóstico da AIDS/estatística & dados numéricos , Adolescente , Fatores Etários , Infecções por Chlamydia/diagnóstico , Infecções por Chlamydia/epidemiologia , Anticoncepção/métodos , Anticoncepção/estatística & dados numéricos , Feminino , Gonorreia/diagnóstico , Gonorreia/epidemiologia , Infecções por HIV/epidemiologia , Humanos , Masculino , Missouri/epidemiologia , Fatores Sexuais , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis/epidemiologia , Adulto Jovem
18.
J Inflamm Res ; 17: 3283-3291, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800599

RESUMO

Background: Toll-like receptors (TLRs) are identified as one of the key components of the innate immune system. The objective of this study was to explore the influence of genetic variability in these TLRs on human immunodeficiency virus (HIV) disease progression with and without tuberculosis (TB) co-infection. Materials and Methods: This prospective, cross-sectional, and longitudinal study included 373 HIV-positive patients without TB infection. This study aimed to examine the genetic variation in TLRs (TLR2, TLR4, and TLR9) between patients with HIV-1 infection and those who progressed to active TB during the two years of follow-up. Results: During the two year follow-up of 373 positive patients, 98 patients progressed to active TB/AIDS (acquired immunodeficiency syndrome). When comparing 98 HIV patients who developed active TB/AIDS to 275 HIV patients who did not, it was discovered that the frequency of the A allele in TLR9 was considerably higher (p <0.001) in HIV patients progressed to active TB/AIDS. Ninety eight HIV individuals who advanced to active TB/AIDS showed a significantly higher frequency of the AA genotype in TLR9 than did in HIV patients who had no TB/AIDS (p <0.001). Conclusion: The increased association of the AA genotype of TLR9 in HIV patients who progressed to active TB during follow-up suggests that HIV-positive patients with the AA genotype of TLR9 have increased susceptibility towards TB during the disease progression.

19.
Int J Pharm Compd ; 28(3): 249-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768505

RESUMO

Since ancient times, mouth fresheners in many different forms have been used throughout the world. Traditional knowledge describes the health benefits of mouth fresheners, and contemporary science is now investigating their benefits. Claims have been made that mouth fresheners not only improve digestion but also promote oral health. Similar, but in a more profound sense, probiotics offer astounding advantages in treating many disorders. In certain cases, probiotics also offer prophylactic effects. Numerous benefits for dental health are being studied for B. coagulans (MB-BCM9) and B. subtilis (MB-BSM12). In this current study, a probiotic and a mouth freshener were combined to ameliorate the impacts of both. The oral residence of probiotics was enhanced by employing mucoadhesive polymers. Numerous compositions were developed and evaluated for the unaltered growth of probiotics, along with other evaluations like microscopy, in vitro mucoadhesive strength, and stability studies. Xanthan gum and hydroxypropyl methylcellulose were used in the development of mucoadhesive probiotic powder by employing the lyophilization technique. More than five hours of residence time were observed in the in vitro study with goat oral mucosa. The enumeration study validated the label claims of MB-BCM9 and MB-BSM12. It also concluded that none of the components of the formulation had a detrimental effect on probiotics. In essence, the present work discloses the novel and stable formulation of a probiotic-based mouth freshener.


Assuntos
Derivados da Hipromelose , Mucosa Bucal , Polissacarídeos Bacterianos , Probióticos , Probióticos/administração & dosagem , Animais , Derivados da Hipromelose/química , Polissacarídeos Bacterianos/química , Cabras , Adesividade , Liofilização , Composição de Medicamentos , Pós , Estabilidade de Medicamentos
20.
Microbiol Resour Announc ; 12(3): e0121222, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36728433

RESUMO

Weizmannia coagulans MB BCM9 (MTCC 25157) is a safe probiotic strain. Here, we announce a fully assembled draft genome sequence consisting of 3,450,803 bp, with 139 contigs. A total of 3,377 protein-coding genes, 15 rRNAs, 80 tRNAs, 5 noncoding RNAs (ncRNAs), and 107 pseudogenes were identified from this assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA