Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 205(6): 663-673, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34941477

RESUMO

Rationale: Reverse triggering dyssynchrony (RT) is a patient-ventilator interaction where a respiratory muscle contraction is triggered by a passive mechanical insufflation. Its impact on diaphragm structure and function is unknown. Objectives: To establish an animal model of RT with lung injury receiving lung-protective ventilation and to assess its impact on the structure and function of the diaphragm. Methods: Lung injury was induced by surfactant depletion and high-stress ventilation in 32 ventilated pigs. Animals were allocated to receive passive mechanical ventilation (Vt: 10 ml/kg; respiratory rate [RR]: 30-35 breaths/min; n = 8) or a more lung-protective strategy (Vt: 6-8 ml/kg; n = 24) with adjustments in RR to facilitate the occurrence of RT for 3 hours. Diaphragm function (transdiaphragmatic pressure [Pdi] during phrenic nerve stimulation [force/frequency curve]) and structure (biopsies) were assessed. The impact of RT on diaphragm function was analyzed according to the breathing effort assessed by the pressure-time product. Measurements and Main Results: Compared with passive ventilation, the protective ventilation group with RT received significantly lower Vt (7 vs. 10 ml/kg) and higher RR (45 vs. 31 breaths/min). An entrainment pattern of 1:1 was the most frequently occurring in 83% of the animals. Breathing effort induced by RT was highly variable across animals. RT with the lowest tercile of breathing effort was associated with 23% higher twitch Pdi compared with passive ventilation, whereas RT with high breathing effort was associated with a 10% lower twitch Pdi and a higher proportion of abnormal muscle fibers. Conclusions: In a reproducible animal model of RT with variable levels of breathing effort and entrainment patterns, RT with high effort is associated with impaired diaphragm function, whereas RT with low effort is associated with preserved diaphragm force.


Assuntos
Lesão Pulmonar , Respiração Artificial , Animais , Diafragma , Humanos , Pulmão , Modelos Teóricos , Respiração Artificial/efeitos adversos , Suínos
2.
Crit Care ; 26(1): 47, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180891

RESUMO

BACKGROUND: An abrupt lung deflation in rodents results in lung injury through vascular mechanisms. Ventilator disconnections during endo-tracheal suctioning in humans often cause cardio-respiratory instability. Whether repeated disconnections or lung deflations cause lung injury or oedema is not known and was tested here in a porcine large animal model. METHODS: Yorkshire pigs (~ 12 weeks) were studied in three series. First, we compared PEEP abruptly deflated from 26 cmH2O or from PEEP 5 cmH2O to zero. Second, pigs were randomly crossed over to receive rapid versus gradual PEEP removal from 20 cmH2O. Third, pigs with relative volume overload, were ventilated with PEEP 15 cmH2O and randomized to repeated ETT disconnections (15 s every 15 min) or no disconnection for 3 h. Hemodynamics, pulmonary variables were monitored, and lung histology and bronchoalveolar lavage studied. RESULTS: As compared to PEEP 5 cmH2O, abrupt deflation from PEEP 26 cmH2O increased PVR, lowered oxygenation, and increased lung wet-to-dry ratio. From PEEP 20 cmH2O, gradual versus abrupt deflation mitigated the changes in oxygenation and vascular resistance. From PEEP 15, repeated disconnections in presence of fluid loading led to reduced compliance, lower oxygenation, higher pulmonary artery pressure, higher lung wet-to-dry ratio, higher lung injury score and increased oedema on morphometry, compared to no disconnects. CONCLUSION: Single abrupt deflation from high PEEP, and repeated short deflations from moderate PEEP cause pulmonary oedema, impaired oxygenation, and increased PVR, in this large animal model, thus replicating our previous finding from rodents. Rapid deflation may thus be a clinically relevant cause of impaired lung function, which may be attenuated by gradual pressure release.


Assuntos
Lesão Pulmonar , Edema Pulmonar , Síndrome do Desconforto Respiratório , Animais , Respiração com Pressão Positiva/métodos , Edema Pulmonar/etiologia , Respiração Artificial , Suínos
3.
Am J Respir Crit Care Med ; 203(10): 1266-1274, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33406012

RESUMO

Rationale: The physiological basis of lung protection and the impact of positive end-expiratory pressure (PEEP) during pronation in acute respiratory distress syndrome are not fully elucidated. Objectives: To compare pleural pressure (Ppl) gradient, ventilation distribution, and regional compliance between dependent and nondependent lungs, and investigate the effect of PEEP during supination and pronation. Methods: We used a two-hit model of lung injury (saline lavage and high-volume ventilation) in 14 mechanically ventilated pigs and studied supine and prone positions. Global and regional lung mechanics including Ppl and distribution of ventilation (electrical impedance tomography) were analyzed across PEEP steps from 20 to 3 cm H2O. Two pigs underwent computed tomography scans: tidal recruitment and hyperinflation were calculated. Measurements and Main Results: Pronation improved oxygenation, increased Ppl, thus decreasing transpulmonary pressure for any PEEP, and reduced the dorsal-ventral pleural pressure gradient at PEEP < 10 cm H2O. The distribution of ventilation was homogenized between dependent and nondependent while prone and was less dependent on the PEEP level than while supine. The highest regional compliance was achieved at different PEEP levels in dependent and nondependent regions in supine position (15 and 8 cm H2O), but for similar values in prone position (13 and 12 cm H2O). Tidal recruitment was more evenly distributed (dependent and nondependent), hyperinflation lower, and lungs cephalocaudally longer in the prone position. Conclusions: In this lung injury model, pronation reduces the vertical pleural pressure gradient and homogenizes regional ventilation and compliance between the dependent and nondependent regions. Homogenization is much less dependent on the PEEP level in prone than in supine positon.


Assuntos
Posicionamento do Paciente , Respiração com Pressão Positiva , Decúbito Ventral , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Decúbito Dorsal , Animais , Modelos Animais de Doenças , Complacência Pulmonar/fisiologia , Lesão Pulmonar/complicações , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Cavidade Pleural/fisiopatologia , Síndrome do Desconforto Respiratório/etiologia , Mecânica Respiratória/fisiologia , Suínos
4.
Am J Respir Crit Care Med ; 203(8): 969-976, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091317

RESUMO

Rationale: Asymmetrical lung injury is a frequent clinical presentation. Regional distribution of Vt and positive end-expiratory pressure (PEEP) could result in hyperinflation of the less-injured lung. The validity of esophageal pressure (Pes) is unknown.Objectives: To compare, in asymmetrical lung injury, Pes with directly measured pleural pressures (Ppl) of both sides and investigate how PEEP impacts ventilation distribution and the regional driving transpulmonary pressure (inspiratory - expiratory).Methods: Fourteen mechanically ventilated pigs with lung injury were studied. One lung was blocked while the contralateral one underwent surfactant lavage and injurious ventilation. Airway pressure and Pes were measured, as was Ppl in the dorsal and ventral pleural space adjacent to each lung. Distribution of ventilation was assessed by electrical impedance tomography. PEEP was studied through decremental steps.Measurements and Results: Ventral and dorsal Ppl were similar between the injured and the noninjured lung across all PEEP levels. Dorsal Ppl and Pes were similar. The driving transpulmonary pressure was similar in the two lungs. Vt distribution between lungs was different at zero end-expiratory pressure (≈70% of Vt going in noninjured lung) owing to different respiratory system compliance (8.3 ml/cm H2O noninjured lung vs. 3.7 ml/cm H2O injured lung). PEEP at 10 cm H2O with transpulmonary pressure around zero homogenized Vt distribution opening the lungs. PEEP ≥16 cm H2O equalized distribution of Vt but with overdistension for both lungs.Conclusions: Despite asymmetrical lung injury, Ppl between injured and noninjured lungs is equalized and esophageal pressure is a reliable estimate of dorsal Ppl. Driving transpulmonary pressure is similar for both lungs. Vt distribution results from regional respiratory system compliance. Moderate PEEP homogenizes Vt distribution between lungs without generating hyperinflation.


Assuntos
Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Respiração com Pressão Positiva/métodos , Respiração Artificial/métodos , Mecânica Respiratória/fisiologia , Suínos , Animais , Modelos Animais
5.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804806

RESUMO

Peritoneal resident macrophages play a key role in combating sepsis in the peritoneal cavity. We sought to determine if peritoneal transplantation of embryonic Myb- "peritoneal-like" macrophages attenuate abdominal fecal sepsis. Directed differentiation of rodent pluripotent stem cells (PSCs) was used in factor-defined media to produce embryonic-derived large "peritoneal-like" macrophages (Ed-LPM) that expressed peritoneal macrophage markers and demonstrated phagocytic capacity. Preclinical in vivo studies determined Ed-LPM efficacy in rodent abdominal fecal sepsis with or without Meropenem. Ex vivo studies explored the mechanism and effects of Ed-LPM on host immune cell number and function, including phagocytosis, reactive oxygen species (ROS) production, efferocytosis and apoptosis. Ed-LPM reduced sepsis severity by decreasing bacterial load in the liver, spleen and lungs. Ed-LPM therapy significantly improved animal survival by ~30% and reduced systemic bacterial burden to levels comparable to Meropenem therapy. Ed-LPM therapy decreased peritoneal TNFα while increasing IL-10 concentrations. Ed-LPMs enhanced peritoneal macrophage phagocytosis of bacteria, increased macrophage production of ROS and restored homeostasis via apoptosis and efferocytosis-induced clearance of neutrophils. In conclusion, Ed-LPM reduced systemic sepsis severity, improved survival and reduced bacterial load by enhancing peritoneal macrophage bacterial phagocytosis and killing and clearance of intra-peritoneal neutrophils. Macrophage therapy may be a potential strategy to address sepsis.


Assuntos
Carga Bacteriana , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-myb/deficiência , Sepse/etiologia , Sepse/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Contagem de Leucócitos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose/imunologia , Prognóstico , Ratos , Sepse/diagnóstico , Sepse/mortalidade , Índice de Gravidade de Doença
6.
Anesthesiology ; 132(1): 140-154, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31764154

RESUMO

BACKGROUND: Mesenchymal stromal cells have therapeutic potential in sepsis, but the mechanism of action is unclear. We tested the effects, dose-response, and mechanisms of action of cryopreserved, xenogeneic-free human umbilical cord mesenchymal stromal cells in a rat model of fecal peritonitis, and examined the role of heme oxygenase-1 in protection. METHODS: Separate in vivo experiments evaluated mesenchymal stromal cells in fecal sepsis, established dose response (2, 5, and 10 million cells/kg), and the role of heme oxygenase-1 in mediating human umbilical cord-derived mesenchymal stromal/stem cell effects. Ex vivo studies utilized pharmacologic blockers and small inhibitory RNAs to evaluate mechanisms of mesenchymal stromal cell enhanced function in (rodent, healthy and septic human) macrophages. RESULTS: Human umbilical cord mesenchymal stromal cells reduced injury and increased survival (from 48%, 12 of 25 to 88%, 14 of 16, P = 0.0033) in fecal sepsis, with dose response studies demonstrating that 10 million cells/kg was the most effective dose. Mesenchymal stromal cells reduced bacterial load and peritoneal leukocyte infiltration (from 9.9 ± 3.1 × 10/ml to 6.2 ± 1.8 × 10/ml, N = 8 to 10 per group, P < 0.0001), and increased heme oxygenase-1 expression in peritoneal macrophages, liver, and spleen. Heme oxygenase-1 blockade abolished the effects of mesenchymal stromal cells (N = 7 or 8 per group). Mesenchymal stromal cells also increased heme oxygenase-1 expression in macrophages from healthy donors and septic patients. Direct ex vivo upregulation of macrophage heme oxygenase-1 enhanced macrophage function (phagocytosis, reactive oxygen species production, bacterial killing). Blockade of lipoxin A4 production in mesenchymal stromal cells, and of prostaglandin E2 synthesis in mesenchymal stromal cell/macrophage cocultures, prevented upregulation of heme oxygenase-1 in macrophages (from 9.6 ± 5.5-fold to 2.3 ± 1.3 and 2.4 ± 2.3 respectively, P = 0.004). Knockdown of heme oxygenase-1 production in macrophages ablated mesenchymal stromal cell enhancement of macrophage phagocytosis. CONCLUSIONS: Human umbilical cord mesenchymal stromal cells attenuate systemic sepsis by enhancing peritoneal macrophage bacterial killing, mediated partly via upregulation of peritoneal macrophage heme oxygenase-1. Lipoxin A4 and prostaglandin E2 play key roles in the mesenchymal stromal cell and macrophage interaction.


Assuntos
Heme Oxigenase-1/metabolismo , Macrófagos Peritoneais/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Sepse/terapia , Cordão Umbilical , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
7.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L1-L5, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407864

RESUMO

Vitamin E (VitE) has important antioxidant and anti-inflammatory effects and is necessary for normal physiological function. α-Tocopherol (α-T), the predominant form of VitE in human tissues, has been extensively studied. Other VitE forms, particularly γ-tocopherol (γ-T), are also potent bioactive molecules. The effects are complex, involving both reactive oxygen and nitrogen species, but trials of VitE have been generally negative. We propose that a nanoparticle approach to delivery of VitE might provide effective delivery and therapeutic effect.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/uso terapêutico , Nanotecnologia , Vitamina E/uso terapêutico , Animais , Humanos , Vitamina E/farmacocinética
8.
Crit Care Med ; 47(2): 254-263, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30653472

RESUMO

OBJECTIVES: A narrative review of the pathophysiology linking altered airway pressure and intracranial pressure and cerebral oxygenation. DATA SOURCES: Online search of PubMed and manual review of articles (laboratory and patient studies) of the altered airway pressure on intracranial pressure, cerebral perfusion, or cerebral oxygenation. STUDY SELECTION: Randomized trials, observational and physiologic studies. DATA EXTRACTION: Our group determined by consensus which resources would best inform this review. DATA SYNTHESIS: In the normal brain, positive-pressure ventilation does not significantly alter intracranial pressure, cerebral oxygenation, or perfusion. In injured brains, the impact of airway pressure on intracranial pressure is variable and determined by several factors; a cerebral venous Starling resistor explains much of the variability. Negative-pressure ventilation can improve cerebral perfusion and oxygenation and reduce intracranial pressure in experimental models, but data are limited, and mechanisms and clinical benefit remain uncertain. CONCLUSIONS: The effects of airway pressure and ventilation on cerebral perfusion and oxygenation are increasingly understood, especially in the setting of brain injury. In the face of competing mechanisms and priorities, multimodal monitoring and individualized titration will increasingly be required to optimize care.


Assuntos
Encéfalo/irrigação sanguínea , Pressão Intracraniana , Respiração com Pressão Positiva , Circulação Cerebrovascular/fisiologia , Humanos , Pressão Intracraniana/fisiologia
9.
Anesthesiology ; 131(3): 594-604, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31335543

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: Higher driving pressure during controlled mechanical ventilation is known to be associated with increased mortality in patients with acute respiratory distress syndrome.Whereas patients with acute respiratory distress syndrome are initially managed with controlled mechanical ventilation, as they improve, they are transitioned to assisted ventilation. Whether higher driving pressure assessed during pressure support (assisted) ventilation can be reliably assessed and whether higher driving pressure is associated with worse outcomes in patients with acute respiratory distress syndrome has not been well studied. WHAT THIS ARTICLE TELLS US THAT IS NEW: This study shows that in the majority of adult patients with acute respiratory distress syndrome, both driving pressure and respiratory system compliance can be reliably measured during pressure support (assisted) ventilation.Higher driving pressure measured during pressure support (assisted) ventilation significantly associates with increased intensive care unit mortality, whereas peak inspiratory pressure does not.Lower respiratory system compliance also significantly associates with increased intensive care unit mortality. BACKGROUND: Driving pressure, the difference between plateau pressure and positive end-expiratory pressure (PEEP), is closely associated with increased mortality in patients with acute respiratory distress syndrome (ARDS). Although this relationship has been demonstrated during controlled mechanical ventilation, plateau pressure is often not measured during spontaneous breathing because of concerns about validity. The objective of the present study is to verify whether driving pressure and respiratory system compliance are independently associated with increased mortality during assisted ventilation (i.e., pressure support ventilation). METHODS: This is a retrospective cohort study conducted on 154 patients with ARDS in whom plateau pressure during the first three days of assisted ventilation was available. Associations between driving pressure, respiratory system compliance, and survival were assessed by univariable and multivariable analysis. In patients who underwent a computed tomography scan (n = 23) during the stage of assisted ventilation, the quantity of aerated lung was compared with respiratory system compliance measured on the same date. RESULTS: In contrast to controlled mechanical ventilation, plateau pressure during assisted ventilation was higher than the sum of PEEP and pressure support (peak pressure). Driving pressure was higher (11 [9-14] vs. 10 [8-11] cm H2O; P = 0.004); compliance was lower (40 [30-50] vs. 51 [42-61] ml · cm H2O; P < 0.001); and peak pressure was similar, in nonsurvivors versus survivors. Lower respiratory system compliance (odds ratio, 0.92 [0.88-0.96]) and higher driving pressure (odds ratio, 1.34 [1.12-1.61]) were each independently associated with increased risk of death. Respiratory system compliance was correlated with the aerated lung volume (n = 23, r = 0.69, P < 0.0001). CONCLUSIONS: In patients with ARDS, plateau pressure, driving pressure, and respiratory system compliance can be measured during assisted ventilation, and both higher driving pressure and lower compliance are associated with increased mortality.


Assuntos
Avaliação de Resultados da Assistência ao Paciente , Respiração com Pressão Positiva/mortalidade , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/terapia , Idoso , Estudos de Coortes , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Complacência Pulmonar , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Volume de Ventilação Pulmonar , Tomografia Computadorizada por Raios X
10.
Anesthesiology ; 131(3): 716-749, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30664057

RESUMO

Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.


Assuntos
Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia
11.
Curr Opin Crit Care ; 25(2): 192-198, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30720482

RESUMO

PURPOSE OF REVIEW: Facilitating spontaneous breathing has been traditionally recommended during mechanical ventilation in acute respiratory distress syndrome (ARDS). However, early, short-term use of neuromuscular blockade appears to improve survival, and spontaneous effort has been shown to potentiate lung injury in animal and clinical studies. The purpose of this review is to describe the beneficial and deleterious effects of spontaneous breathing in ARDS, explain potential mechanisms for harm, and provide contemporary suggestions for clinical management. RECENT FINDINGS: Gentle spontaneous effort can improve lung function and prevent diaphragm atrophy. However, accumulating evidence indicates that spontaneous effort may cause or worsen lung and diaphragm injury, especially if the ARDS is severe or spontaneous effort is vigorous. Recently, such effort-dependent lung injury has been termed patient self-inflicted lung injury (P-SILI). Finally, several approaches to minimize P-SILI while maintaining some diaphragm activity (e.g. partial neuromuscular blockade, high PEEP) appear promising. SUMMARY: We update and summarize the role of spontaneous breathing during mechanical ventilation in ARDS, which can be beneficial or deleterious, depending on the strength of spontaneous activity and severity of lung injury. Future studies are needed to determine ventilator strategies that minimize injury but maintaining some diaphragm activity.


Assuntos
Lesão Pulmonar , Respiração Artificial , Síndrome do Desconforto Respiratório , Animais , Diafragma/fisiopatologia , Humanos , Pulmão/fisiopatologia
12.
Am J Respir Crit Care Med ; 197(8): 991-993, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29313706

RESUMO

We identified 810 reports that describe extracorporeal membrane oxygenation (ECMO) in acute respiratory distress syndrome (ARDS), and 61 fulfilled our inclusion criteria. The authors of 26 (43%) reports responded to e-mail requests for confirmation (or clarification). Based on the aggregate (published and e-mailed) information, unambiguous data were available relating to 17 papers. These 17 papers represented 672 patients with ARDS who were cannulated with venovenous ECMO; of these patients, 208 (31%) received a trial of prone positioning before ECMO, and 464 (69%) did not. A key randomized controlled trial was published in 2013 that reported a survival benefit associated with prone positioning (N Engl J Med 2013;368:2159-2168). The proportion of all venovenous ECMO patients in whom prone positioning was used before ECMO was lower in studies published after 2013 (84 of 452 [19%]) than in those published before 2013 (116 of 210 [55%]) (P < 0.05). These data suggest a systematic bias in the reporting of outcomes after ECMO in the literature. The vast majority of reported patients who received ECMO did not first receive therapy that (in contrast to ECMO) is simple, cheap, and of proven benefit; therefore, inferences about the efficacy of ECMO in ARDS are of limited use.


Assuntos
Oxigenação por Membrana Extracorpórea/economia , Oxigenação por Membrana Extracorpórea/métodos , Decúbito Ventral , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Am J Respir Crit Care Med ; 198(9): 1165-1176, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29902384

RESUMO

RATIONALE: Ventilator management in acute respiratory distress syndrome usually focuses on setting parameters, but events occurring at ventilator disconnection are not well understood. OBJECTIVES: To determine if abrupt deflation after sustained inflation causes lung injury. METHODS: Male Sprague-Dawley rats were ventilated (low Vt, 6 ml/kg) and randomized to control (n = 6; positive end-expiratory pressure [PEEP], 3 cm H2O; 100 min) or intervention (n = 6; PEEP, 3-11 cm H2O over 70 min; abrupt deflation to zero PEEP; ventilation for 30 min). Lung function and injury was assessed, scanning electron microscopy performed, and microvascular leak timed by Evans blue dye (n = 4/group at 0, 2, 5, 10, and 20 min after deflation). Hemodynamic assessment included systemic arterial pressure (n = 6), echocardiography (n = 4), and right (n = 6) and left ventricular pressures (n = 6). MEASUREMENTS AND MAIN RESULTS: Abrupt deflation after sustained inflation (vs. control) caused acute lung dysfunction (compliance 0.48 ± 1.0 vs. 0.82 ± 0.2 m/cm H2O, oxygen saturation as measured by pulse oximetry 67 ± 23.5 vs. 91 ± 4.4%; P < 0.05) and injury (wet/dry ratio 6.1 ± 0.6 vs. 4.6 ± 0.4; P < 0.01). Vascular leak was absent before deflation and maximal 5-10 minutes thereafter; injury was predominantly endothelial. At deflation, left ventricular preload, systemic blood pressure, and left ventricular end-diastolic pressure increased precipitously in proportion to the degree of injury. Injury caused later right ventricular failure. Sodium nitroprusside prevented the increase in systemic blood pressure and left ventricular end-diastolic pressure associated with deflation, and prevented injury. Injury did not occur with gradual deflation. CONCLUSIONS: Abrupt deflation after sustained inflation can cause acute lung injury. It seems to be mediated by acute left ventricular decompensation (caused by increased left ventricular preload and afterload) that elevates pulmonary microvascular pressure; this directly injures the endothelium and causes edema, which is potentiated by the surge in pulmonary perfusion.


Assuntos
Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Respiração com Pressão Positiva , Suspensão de Tratamento , Animais , Modelos Animais de Doenças , Pulmão/fisiopatologia , Masculino , Oximetria , Ratos , Ratos Sprague-Dawley , Mecânica Respiratória
14.
Am J Respir Crit Care Med ; 198(2): 197-207, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29420904

RESUMO

RATIONALE: It remains unclear how prone positioning improves survival in acute respiratory distress syndrome. Using serial computed tomography (CT), we previously reported that "unstable" inflation (i.e., partial aeration with large tidal density swings, indicating increased local strain) is associated with injury progression. OBJECTIVES: We prospectively tested whether prone position contains the early propagation of experimental lung injury by stabilizing inflation. METHODS: Injury was induced by tracheal hydrochloric acid in rats; after randomization to supine or prone position, injurious ventilation was commenced using high tidal volume and low positive end-expiratory pressure. Paired end-inspiratory (EI) and end-expiratory (EE) CT scans were acquired at baseline and hourly up to 3 hours. Each sequential pair (EI, EE) of CT images was superimposed in parametric response maps to analyze inflation. Unstable inflation was then measured in each voxel in both dependent and nondependent lung. In addition, five pigs were imaged (EI and EE) prone versus supine, before and (1 hour) after hydrochloric acid aspiration. MEASUREMENTS AND MAIN RESULTS: In rats, prone position limited lung injury propagation and increased survival (11/12 vs. 7/12 supine; P = 0.01). EI-EE densities, respiratory mechanics, and blood gases deteriorated more in supine versus prone rats. At baseline, more voxels with unstable inflation occurred in dependent versus nondependent regions when supine (41 ± 6% vs. 18 ± 7%; P < 0.01) but not when prone. In supine pigs, unstable inflation predominated in dorsal regions and was attenuated by prone positioning. CONCLUSIONS: Prone position limits the radiologic progression of early lung injury. Minimizing unstable inflation in this setting may alleviate the burden of acute respiratory distress syndrome.


Assuntos
Decúbito Ventral/fisiologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/terapia , Decúbito Dorsal/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Humanos , Modelos Animais , Posicionamento do Paciente/métodos , Respiração com Pressão Positiva/métodos , Ratos , Suínos , Tomografia Computadorizada por Raios X/métodos
15.
Am J Respir Crit Care Med ; 197(8): 1018-1026, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29323931

RESUMO

RATIONALE: Esophageal manometry is the clinically available method to estimate pleural pressure, thus enabling calculation of transpulmonary pressure (Pl). However, many concerns make it uncertain in which lung region esophageal manometry reflects local Pl. OBJECTIVES: To determine the accuracy of esophageal pressure (Pes) and in which regions esophageal manometry reflects pleural pressure (Ppl) and Pl; to assess whether lung stress in nondependent regions can be estimated at end-inspiration from Pl. METHODS: In lung-injured pigs (n = 6) and human cadavers (n = 3), Pes was measured across a range of positive end-expiratory pressure, together with directly measured Ppl in nondependent and dependent pleural regions. All measurements were obtained with minimal nonstressed volumes in the pleural sensors and esophageal balloons. Expiratory and inspiratory Pl was calculated by subtracting local Ppl or Pes from airway pressure; inspiratory Pl was also estimated by subtracting Ppl (calculated from chest wall and respiratory system elastance) from the airway plateau pressure. MEASUREMENTS AND MAIN RESULTS: In pigs and human cadavers, expiratory and inspiratory Pl using Pes closely reflected values in dependent to middle lung (adjacent to the esophagus). Inspiratory Pl estimated from elastance ratio reflected the directly measured nondependent values. CONCLUSIONS: These data support the use of esophageal manometry in acute respiratory distress syndrome. Assuming correct calibration, expiratory Pl derived from Pes reflects Pl in dependent to middle lung, where atelectasis usually predominates; inspiratory Pl estimated from elastance ratio may indicate the highest level of lung stress in nondependent "baby" lung, where it is vulnerable to ventilator-induced lung injury.


Assuntos
Esôfago/fisiopatologia , Manometria/métodos , Respiração com Pressão Positiva/métodos , Respiração Artificial/métodos , Mecânica Respiratória/fisiologia , Lesão Pulmonar Induzida por Ventilação Mecânica/diagnóstico , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Animais , Cadáver , Humanos , Modelos Animais , Testes de Função Respiratória , Suínos
16.
Am J Respir Crit Care Med ; 197(10): 1285-1296, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29323536

RESUMO

RATIONALE: In acute respiratory distress syndrome (ARDS), atelectatic solid-like lung tissue impairs transmission of negative swings in pleural pressure (Ppl) that result from diaphragmatic contraction. The localization of more negative Ppl proportionally increases dependent lung stretch by drawing gas either from other lung regions (e.g., nondependent lung [pendelluft]) or from the ventilator. Lowering the level of spontaneous effort and/or converting solid-like to fluid-like lung might render spontaneous effort noninjurious. OBJECTIVES: To determine whether spontaneous effort increases dependent lung injury, and whether such injury would be reduced by recruiting atelectatic solid-like lung with positive end-expiratory pressure (PEEP). METHODS: Established models of severe ARDS (rabbit, pig) were used. Regional histology (rabbit), inflammation (positron emission tomography; pig), regional inspiratory Ppl (intrabronchial balloon manometry), and stretch (electrical impedance tomography; pig) were measured. Respiratory drive was evaluated in 11 patients with ARDS. MEASUREMENTS AND MAIN RESULTS: Although injury during muscle paralysis was predominantly in nondependent and middle lung regions at low (vs. high) PEEP, strong inspiratory effort increased injury (indicated by positron emission tomography and histology) in dependent lung. Stronger effort (vs. muscle paralysis) caused local overstretch and greater tidal recruitment in dependent lung, where more negative Ppl was localized and greater stretch was generated. In contrast, high PEEP minimized lung injury by more uniformly distributing negative Ppl, and lowering the magnitude of spontaneous effort (i.e., deflection in esophageal pressure observed in rabbits, pigs, and patients). CONCLUSIONS: Strong effort increased dependent lung injury, where higher local lung stress and stretch was generated; effort-dependent lung injury was minimized by high PEEP in severe ARDS, which may offset need for paralysis.


Assuntos
Pulmão/fisiopatologia , Respiração com Pressão Positiva/métodos , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/terapia , Animais , Modelos Animais de Doenças , Coelhos , Suínos
17.
Am J Respir Crit Care Med ; 197(2): 204-213, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28930478

RESUMO

RATIONALE: Diaphragm dysfunction worsens outcomes in mechanically ventilated patients, but the clinical impact of potentially preventable changes in diaphragm structure and function caused by mechanical ventilation is unknown. OBJECTIVES: To determine whether diaphragm atrophy developing during mechanical ventilation leads to prolonged ventilation. METHODS: Diaphragm thickness was measured daily by ultrasound in adults requiring invasive mechanical ventilation; inspiratory effort was assessed by thickening fraction. The primary outcome was time to liberation from ventilation. Secondary outcomes included complications (reintubation, tracheostomy, prolonged ventilation, or death). Associations were adjusted for age, severity of illness, sepsis, sedation, neuromuscular blockade, and comorbidity. MEASUREMENTS AND MAIN RESULTS: Of 211 patients enrolled, 191 had two or more diaphragm thickness measurements. Thickness decreased more than 10% in 78 patients (41%) by median Day 4 (interquartile range, 3-5). Development of decreased thickness was associated with a lower daily probability of liberation from ventilation (adjusted hazard ratio, 0.69; 95% confidence interval [CI], 0.54-0.87; per 10% decrease), prolonged ICU admission (adjusted duration ratio, 1.71; 95% CI, 1.29-2.27), and a higher risk of complications (adjusted odds ratio, 3.00; 95% CI, 1.34-6.72). Development of increased thickness (n = 47; 24%) also predicted prolonged ventilation (adjusted duration ratio, 1.38; 95% CI, 1.00-1.90). Decreasing thickness was related to abnormally low inspiratory effort; increasing thickness was related to excessive effort. Patients with thickening fraction between 15% and 30% (similar to breathing at rest) during the first 3 days had the shortest duration of ventilation. CONCLUSIONS: Diaphragm atrophy developing during mechanical ventilation strongly impacts clinical outcomes. Targeting an inspiratory effort level similar to that of healthy subjects at rest might accelerate liberation from ventilation.


Assuntos
Diafragma/diagnóstico por imagem , Diafragma/patologia , Mortalidade Hospitalar , Respiração Artificial/efeitos adversos , Insuficiência Respiratória/mortalidade , Adulto , Idoso , Atrofia/patologia , Estado Terminal/terapia , Feminino , Seguimentos , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Respiração Artificial/métodos , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/patologia , Medição de Risco , Resultado do Tratamento , Ultrassonografia Doppler/métodos
18.
Anesthesiology ; 129(1): 143-153, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29474201

RESUMO

BACKGROUND: Lower tidal volumes are increasingly used in acute respiratory distress syndrome, but mortality has changed little in the last 20 yr. Therefore, in addition to ventilator settings, it is important to target molecular mediators of injury. Sepsis and other inflammatory states increase circulating concentrations of Gas6, a ligand for the antiinflammatory receptor Axl, and of a soluble decoy form of Axl. We investigated the effects of lung stretch on Axl signaling. METHODS: We used a mouse model of early injury from high tidal volume and assessed the effects of inhibiting Axl on in vivo lung injury (using an antagonist R428, n = 4/group). We further determined the effects of stretch on Axl activation using in vitro lung endothelial cells. RESULTS: High tidal volume caused mild injury (compliance decreased 6%) as intended, and shedding of the Axl receptor (soluble Axl in bronchoalveolar fluid increased 77%). The Axl antagonist R428 blocked the principal downstream Axl target (suppressor of cytokine signaling 3 [SOCS3]) but did not worsen lung physiology or inflammation. Cyclic stretch in vitro caused Axl to become insensitive to activation by its agonist, Gas6. Finally, in vitro Axl responses were rescued by blocking stretch-activated calcium channels (using guanidinium chloride [GdCl3]), and the calcium ionophore ionomycin replicated the effect of stretch. CONCLUSIONS: These data suggest that lung endothelial cell overdistention activates ion channels, and the resultant influx of Ca inactivates Axl. Downstream inactivation of Axl by stretch was not anticipated; preventing this would be required to exploit Axl receptors in reducing lung injury.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Respiração Artificial/efeitos adversos , Lesão Pulmonar Aguda/patologia , Animais , Benzocicloeptenos/farmacologia , Células Cultivadas , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Ratos , Respiração Artificial/tendências , Volume de Ventilação Pulmonar/efeitos dos fármacos , Volume de Ventilação Pulmonar/fisiologia , Triazóis/farmacologia , Receptor Tirosina Quinase Axl
19.
Anesthesiology ; 129(1): 163-172, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29708892

RESUMO

BACKGROUND: In supine patients with acute respiratory distress syndrome, the lung typically partitions into regions of dorsal atelectasis and ventral aeration ("baby lung"). Positive airway pressure is often used to recruit atelectasis, but often overinflates ventral (already aerated) regions. A novel approach to selective recruitment of dorsal atelectasis is by "continuous negative abdominal pressure." METHODS: A randomized laboratory study was performed in anesthetized pigs. Lung injury was induced by surfactant lavage followed by 1 h of injurious mechanical ventilation. Randomization (five pigs in each group) was to positive end-expiratory pressure (PEEP) alone or PEEP with continuous negative abdominal pressure (-5 cm H2O via a plexiglass chamber enclosing hindlimbs, pelvis, and abdomen), followed by 4 h of injurious ventilation (high tidal volume, 20 ml/kg; low expiratory transpulmonary pressure, -3 cm H2O). The level of PEEP at the start was ≈7 (vs. ≈3) cm H2O in the PEEP (vs. PEEP plus continuous negative abdominal pressure) groups. Esophageal pressure, hemodynamics, and electrical impedance tomography were recorded, and injury determined by lung wet/dry weight ratio and interleukin-6 expression. RESULTS: All animals survived, but cardiac output was decreased in the PEEP group. Addition of continuous negative abdominal pressure to PEEP resulted in greater oxygenation (PaO2/fractional inspired oxygen 316 ± 134 vs. 80 ± 24 mmHg at 4 h, P = 0.005), compliance (14.2 ± 3.0 vs. 10.3 ± 2.2 ml/cm H2O, P = 0.049), and homogeneity of ventilation, with less pulmonary edema (≈10% less) and interleukin-6 expression (≈30% less). CONCLUSIONS: Continuous negative abdominal pressure added to PEEP reduces ventilator-induced lung injury in a pig model compared with PEEP alone, despite targeting identical expiratory transpulmonary pressure.


Assuntos
Músculos Abdominais/fisiologia , Modelos Animais de Doenças , Impedância Elétrica , Pressão , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Animais , Impedância Elétrica/uso terapêutico , Suínos , Volume de Ventilação Pulmonar/fisiologia
20.
Am J Respir Crit Care Med ; 196(1): 18-28, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146637

RESUMO

Clinicians who treat patients with acute respiratory distress syndrome (ARDS) use information and guidance from a wide array of sources, ranging from laboratory experiments, clinical data, health services research, intuition, to personal experience. Each of these sources of information brings unique methodology and information, but each is inherently limited. Because ARDS is a syndrome (and not a disease), the clinician or scientist must take additional care when applying knowledge to individual patients among a group, because patients often do not have identical lung pathophysiology. However, an overwhelming body of knowledge has accumulated in the field from multiple sources. In this review, we describe the nature of some of these sources as they relate to ARDS and review examples of when they have succeeded (and sometimes failed) in shaping practice or advancing knowledge about ARDS.


Assuntos
Pesquisa Biomédica , Modelos Biológicos , Projetos de Pesquisa , Síndrome do Desconforto Respiratório/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA