Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 631(8020): 294-299, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867054

RESUMO

Liquid crystals, with their ability to self-assemble, strong response to an electric field and integrability into complex systems, are key materials in light-beam manipulation1. The recently discovered ferroelectric nematic liquid crystals2,3 also have considerable second-order optical nonlinearity, making them a potential material for nonlinear optics4,5. Their use as sources of quantum light could considerably extend the boundaries of photonic quantum technologies6. However, spontaneous parametric down-conversion, the basic source of entangled photons7, heralded single photons8 and squeezed light9, has so far not been observed in liquid crystals-or in any liquids or organic materials. Here we implement spontaneous parametric down-conversion in a ferroelectric nematic liquid crystal and demonstrate electric-field tunable broadband generation of entangled photons, with an efficiency comparable to that of the best nonlinear crystals. The emission rate and polarization state of photon pairs is markedly varied by applying a few volts or twisting the molecular orientation along the sample. A liquid-crystal source enables a special type of quasi-phase matching10, which is based on the molecular twist structure and is therefore reconfigurable for the desired spectral and polarization properties of photon pairs. Such sources promise to outperform standard nonlinear optical materials in terms of functionality, brightness and the tunability of the generated quantum state. The concepts developed here can be extended to complex topological structures, macroscopic devices and multi-pixel tunable quantum light sources.

2.
Nanoscale ; 16(9): 4691-4702, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38319598

RESUMO

Color centers in hexagonal boron nitride (hBN) have been emerging as a multifunctional platform for various optical applications including quantum information processing, quantum computing and imaging. Simultaneously, due to its biocompatibility and biodegradability hBN is a promising material for biomedical applications. In this work, we demonstrate single-photon emission from hBN color centers embedded inside live cells and their application to cellular barcoding. The generation and internalization of multiple color centers into cells was performed via simple and scalable procedure while keeping the cells unharmed. The emission from live cells was observed as multiple diffraction-limited spots, which exhibited excellent single-photon characteristics with high single-photon purity of 0.1 and superb emission stability without photobleaching or spectral shifts over several hours. Due to different emission wavelengths and peak widths of the color centers, they were employed as barcodes. We term them Quantum Photonic Barcodes (QPBs). Each QPB can exist in one out of 470 possible distinguishable states and a combination of a few QPBs per cell can be used to uniquely tag virtually an unlimited number of cells. The barcodes developed here offer some excellent properties, including ease of production by a single-step procedure, biocompatibility and biodegradability, emission stability, no photobleaching, small size and a huge number of unique barcodes. This work provides a basis for the use of hBN color centers for robust barcoding of cells and due to the single photon emission, presented concepts could in future be extended to quantum-limited sensing and super-resolution imaging.

3.
Nat Commun ; 13(1): 1269, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277496

RESUMO

Optical microcavities and microlasers were recently introduced as probes inside living cells and tissues. Their main advantages are spectrally narrow emission lines and high sensitivity to the environment. Despite numerous novel methods for optical imaging in strongly scattering biological tissues, imaging at single-cell resolution beyond the ballistic light transport regime remains very challenging. Here, we show that optical microcavity probes embedded inside cells enable three-dimensional localization and tracking of individual cells over extended time periods, as well as sensing of their environment, at depths well beyond the light transport length. This is achieved by utilizing unique spectral features of the whispering-gallery modes, which are unaffected by tissue scattering, absorption, and autofluorescence. In addition, microcavities can be functionalized for simultaneous sensing of various parameters, such as temperature or pH value, which extends their versatility beyond the capabilities of standard fluorescent labels.


Assuntos
Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA