Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 19(3): e3001096, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33705388

RESUMO

The regulation of protein synthesis is essential for maintaining cellular homeostasis, especially during stress responses, and its dysregulation could underlie the development of human diseases. The critical step during translation regulation is the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Here we report the identification of a direct kinase of eIF2α, microtubule affinity-regulating kinase 2 (MARK2), which phosphorylates eIF2α in response to proteotoxic stress. The activity of MARK2 was confirmed in the cells lacking the 4 previously known eIF2α kinases. MARK2 itself was found to be a substrate of protein kinase C delta (PKCδ), which serves as a sensor for protein misfolding stress through a dynamic interaction with heat shock protein 90 (HSP90). Both MARK2 and PKCδ are activated via phosphorylation in proteotoxicity-associated neurodegenerative mouse models and in human patients with amyotrophic lateral sclerosis (ALS). These results reveal a PKCδ-MARK2-eIF2α cascade that may play a critical role in cellular proteotoxic stress responses and human diseases.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Homeostase , Humanos , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Fosforilação , Biossíntese de Proteínas , Estresse Fisiológico/fisiologia , eIF-2 Quinase/metabolismo
2.
J Comp Neurol ; 521(7): 1585-97, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23042409

RESUMO

Graded and modular expressions of Eph-ephrins are known to provide positional information for the formation of topographic maps and patterning in the developing nervous system. Previously we have shown that ephrin-B2 is expressed in a continuous gradient across the tonotopic axis of the central nucleus of the inferior colliculus (CNIC), whereas patterns are discontinuous and modular in the lateral cortex of the IC (LCIC). The present study explores the involvement of ephrin-B2 signaling in the development of projections to the CNIC and LCIC arising from the lateral superior olivary nuclei (LSO) prior to hearing onset. Anterograde and retrograde fluorescent tracing methods in neonatal fixed tissue preparations were used to compare topographic mapping and the establishment of LSO layers/modules in wild-type and ephrin-B2(lacZ/+) mice (severely compromised reverse signaling). At birth, pioneer LSO axons occupy the ipsilateral IC in both groups but are delayed contralaterally in ephrin-B2(lacZ/+) mutants. By the onset of hearing, both wild-type and mutant projections form discernible layers bilaterally in the CNIC and modular arrangements within the ipsilateral LCIC. In contrast, ephrin-B2(lacZ/+) mice lack a reliable topography in LSO-IC projections, suggesting that fully functional ephrin-B2 reverse signaling is required for normal projection mapping. Taken together, these ephrin-B2 findings paired with known coexpression of EphA4 suggest the importance of these signaling proteins in establishing functional auditory circuits prior to experience.


Assuntos
Efrina-B2/metabolismo , Colículos Inferiores/crescimento & desenvolvimento , Colículos Inferiores/metabolismo , Neurogênese/fisiologia , Núcleo Olivar/crescimento & desenvolvimento , Núcleo Olivar/metabolismo , Transdução de Sinais , Animais , Colículos Inferiores/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Núcleo Olivar/citologia , Transdução de Sinais/fisiologia
3.
Dev Neurobiol ; 71(2): 182-99, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20886601

RESUMO

Central processing of complex auditory tasks requires elaborate circuitry. The auditory midbrain, or inferior colliculus (IC), epitomizes such precise organization, where converging inputs form discrete, tonotopically-arranged axonal layers. Previously in rat, we established that shaping of multiple afferent patterns in the IC central nucleus (CNIC) occurs prior to experience. This study implicates an Eph receptor tyrosine kinase and a corresponding ephrin ligand in signaling this early topographic registry. We report that EphA4 and ephrin-B2 expression patterns in the neonatal rat and mouse IC correlate temporally and spatially with that of developing axonal layers. DiI-labeling confirms projections arising from the lateral superior olive (LSO) form frequency-specific layers within the ipsilateral and contralateral mouse CNIC, as has been described in other species. Immunohistochemistry (EphA4 and ephrin-B2) and ephrin-B2 lacZ histochemistry reveal clear gradients in expression across the tonotopic axis, with most concentrated labeling observed in high-frequency, ventromedial aspects of the CNIC. Discrete patches of labeling were also discernible in the external cortex of the IC (ECIC; EphA4 patches in rat, ephrin-B2 patches in mouse). Observed gradients in the CNIC and compartmentalized ECIC expression persisted through the first postnatal week, before becoming less intense and more homogeneously distributed by the functional onset of hearing. EphA4 and ephrin-B2-positive neurons were evident in several auditory brainstem nuclei known to send patterened inputs to the IC. These findings suggest the involvement of cell-cell EphA4 and ephrin-B2 signaling in establishing order in the developing IC.


Assuntos
Vias Auditivas/metabolismo , Efrina-B2/biossíntese , Colículos Inferiores/metabolismo , Neurogênese/fisiologia , Receptor EphA4/biossíntese , Animais , Animais Recém-Nascidos , Vias Auditivas/citologia , Vias Auditivas/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Colículos Inferiores/citologia , Colículos Inferiores/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA