Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Faraday Discuss ; 242(0): 269-285, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36168998

RESUMO

The emission of photons from a thermally populated electronic excited state, via the process of recurrent fluorescence, has been recognized as a prominent cooling channel in hot molecules and small metal clusters. For the latter case, however, only monometallic species have been investigated to date. An active radiative cooling channel has a stabilizing effect and can favor the size and composition specific production of selected clusters. In this work, the influence of silver and palladium doping on the radiative cooling of gold cluster cations is studied. The quenching of metastable fragmentation due to radiation of laser-excited Aun+, AgAun-1+ and PdAun-1+ (n = 11-15) clusters is investigated in a single-pass molecular beam setup. The observed high radiation rates, with values in the range from 103 to 105 s-1, are consistent with recurrent fluorescence. The rates present a pronounced odd-even staggering with higher values for the clusters with closed-shell electronic configurations. While substitution of Au with Ag does not alter the odd-even pattern with cluster size, replacing Au with Pd shifts the pattern by one atom. The experimental observations are discussed in terms of the dissociation energy of the clusters, which sets their effective temperature during photon emission, and the low-lying electronic excited states involved in the photon emission process. Linear-response time-dependent density functional theory calculations on selected species are used to illustrate the significant effect of the electronic structure on the radiation rates. For n = 14, substitution of Au with Ag lowers the energy of the lowest-energy transition in the cluster, which in addition has a higher oscillator strength, favoring radiative cooling. The opposite effect is seen in Pd doped clusters. Based on this analysis, conclusions can be drawn about the significance of radiative cooling in laser-excited alloy clusters, with a concomitant fast stabilization at high internal energy conditions.

2.
Nanoscale ; 14(9): 3618-3624, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35188173

RESUMO

In the past decade, the structural and electronic properties of monolayer-protected metal clusters, which can be produced size-selected in macroscopic amounts, have received a lot of attention. Their great potential for optical applications has been identified. In the high intensity regime, monolayer-protected metal clusters show pronounced nonlinear absorption and refraction. Naturally, these phenomena are wavelength-dependent, however, such dependence is largely unexplored. Here, we quantify the wavelength-dependent non-linear optical absorption and refraction cross sections of atomically precise Au25(DDT)18 and Au38(DDT)24 clusters, using the z-scan technique in combination with a tunable nanosecond laser source. Qualitatively different non-linear optical phenomena were found to take place at different excitation wavelengths (two-photon and excited-state absorption, intensity saturation and non-linear refraction). Both clusters have high nonlinear absorption cross sections at 532 nm, and present a (local) maximum at 640 nm, together with a maximum in the absorption saturation. The nonlinear refraction is always negative for Au25(DDT)18, while it changes sign for Au38(DDT)24. Depending on the wavelength, the underlying mechanism of the nonlinear absorption effects is two-photon absorption or excited state absorption. The obtained very high nonlinear cross sections, on the order of 107-109 GM, demonstrate the great potential of those clusters as nonlinear absorption or refraction materials in optical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA