Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Angew Chem Int Ed Engl ; 63(18): e202401027, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38415373

RESUMO

The incorporation of Si atoms into organic compounds significantly increases a variety of functionality, facilitating further applications. Recently, on-surface synthesis was introduced into organosilicon chemistry as 1,4-disilabenzene bridged nanostructures were obtained via coupling between silicon atoms and brominated phenyl groups at the ortho position on Au(111). Here, we demonstrate a high generality of this strategy via syntheses of silole derivatives and nanoribbon structures with eight-membered sila-cyclic rings from dibrominated molecules at the bay and peri positions on Au(111), respectively. Their structures and electronic properties were investigated by a combination of scanning tunneling microscopy/spectroscopy and density functional theory calculations. This work demonstrates a great potential to deal with heavy group 14 elements in on-surface silicon chemistry.

2.
Chemistry ; 29(15): e202203622, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36539358

RESUMO

On-surface cyclodehydrogenation recently became an important reaction to planarize π-conjugated molecules and oligomers. However, the high-activation barrier to cleave the C-H bond often requires high-temperature annealing, consequently restricting structures of precursor molecules and/or leading to random fusion at their edges. Here, we present a synthesis of pyrrolopyrrole-bridged ladder oligomers from 11,11,12,12-tetrabromo-1,4,5,8-tetraaza-9,10-anthraquinodimethane molecules on Ag(111) with bond-resolved scanning tunnelling microscopy. This non-dehydrogenative cyclization between pyrazine and ethynylene/cumulene groups has a low-activation barrier for forming intermediary dimeric oligomer containing dipyrazinopyrrolopyrrolopyrazine units, thus giving new insight into the strain-sensitive in ladder-oligomer formation.

3.
Angew Chem Int Ed Engl ; 62(24): e202302534, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36929312

RESUMO

Graphene nanoribbons (GNRs) and nanographenes synthesized by on-surface reactions using tailor-made molecular precursors offer an ideal playground for a study of magnetism towards nano-spintronics. Although the zigzag edge of GNRs has been known to host magnetism, the underlying metal substrates usually veil the edge-induced Kondo effect. Here, we report the on-surface synthesis of unprecedented, π-extended 7-armchair GNRs using 7-bromo-12-(10-bromoanthracen-9-yl)tetraphene as the precursor. Characterization by scanning tunneling microscopy/spectroscopy revealed unique rearrangement reactions leading to pentagon- or pentagon/heptagon-incorporated, nonplanar zigzag termini, which demonstrated Kondo resonances even on bare Au(111). Density functional theory calculations indicate that the nonplanar structure significantly reduces the interaction between the zigzag terminus and the Au(111) surface, leading to a recovery of the spin localization of the zigzag edge. Such a distortion of planar GNR structures offers a degree of freedom to control the magnetism on metal substrates.

4.
Phys Chem Chem Phys ; 24(36): 22191-22197, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36093623

RESUMO

Multiple intermolecular interactions offer a high degree of controllability of on-surface molecular assemblies. Here, two kinds of molecular networks were formed by depositing 11,11,12,12-tetrabromo-1,4,5,8-tetraaza-9,10-anthraquinodimethane derivatives with two different alkyl groups in length (C4 and C8) on clean Ag(111) surfaces under ultrahigh vacuum. The detailed structures of each network before and after the cleavage of the C-Br bonds were investigated with high-resolution scanning tunneling microscopy at low temperature. We found that the diffusion of the Br atoms by high-temperature annealing plays a role in the formation of Br-mediated self-assembly. While dissociated Br atoms interacted with alkyl groups by hydrogen bonding through C-H⋯Br contacts in both systems, the different strengths of the van der Waals interactions between the alkyl groups resulted in the formation of different structures.

5.
Nano Lett ; 21(15): 6456-6462, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34038137

RESUMO

Two-dimensional honeycomb molecular networks confine a substrate's surface electrons within their pores, providing an ideal playground to investigate the quantum electron scattering phenomena. Besides surface state confinement, laterally protruding organic states can collectively hybridize at the smallest pores into superatom molecular orbitals. Although both types of pore states could be simultaneously hosted within nanocavities, their coexistence and possible interaction are unexplored. Here, we show that these two types of pore states do coexist within the smallest nanocavities of a two-dimensional halogen-bonding multiporous network grown on Ag(111) studied using a combination of scanning tunneling microscopy and spectroscopy, density functional theory calculations, and electron plane wave expansion simulations. We find that superatom molecular orbitals undergo an important stabilization when hybridizing with the confined surface state, following the significant lowering of its free-standing energy. These findings provide further control over the surface electronic structure exerted by two-dimensional nanoporous systems.

6.
Angew Chem Int Ed Engl ; 61(3): e202114697, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34826204

RESUMO

On-surface chemical reaction has become a very powerful technique to synthesize nanostructures by linking small molecules in the bottom-up approach. Given the fact that most reactants are simultaneously activated at certain temperatures, a sequential reaction in a controlled way has remained challenging. Here, we present an on-surface synthesis of multi-block co-oligomers from trifluoromethyl (CF3 ) substituted porphyrin metal complexes. The oligomerization on Au(111) is demonstrated with a combination of bond-resolved scanning probe microscopy and density functional theory (DFT) calculations. Even after the first oligomerization of single monomer unit, the termini of the oligomer keep the CF3 group, which can be used as a reactant for further coupling in a sequential order. Consequently, copper, cobalt, and palladium complexes of bisanthracene-fused porphyrin oligomers were linked with each other in a designed order.

7.
Phys Chem Chem Phys ; 23(9): 5455-5459, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33650587

RESUMO

Electronic properties of molecules and carbon nanomaterials are usually affected by metal substrates. An electronic decoupling buffer layer is of importance to reveal their intrinsic properties. Here, the strength of electronic decoupling by a gold silicide buffer layer formed on Au(111) was studied using scanning tunneling microscopy/spectroscopy. The HOMO-LUMO gap of fullerene adsorbed on the buffer layer is approximately 3.0 eV, which is in between that on bare Au(111) and on a NaCl bilayer film, indicating a moderate decoupling.

8.
Angew Chem Int Ed Engl ; 60(17): 9427-9432, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33576120

RESUMO

Cyclo-dehydrogenation is of importance to induce the planarization of molecules on noble surfaces upon annealing. In contrast to a number of successful syntheses of polycyclic aromatic hydrocarbons by forming carbon-carbon bonds, it is still rare to conduct conjugation and cleavage of carbon-nitrogen bonds in molecules. Here, we present a systematic transformation of the C-N bonds in11,11,12,12-tetraphenyl-1,4,5,8-tetraazaanthraquinodimethane as well as three other derivatives on Au(111). With bond-resolved scanning tunneling microscopy, we discovered novel the "heterocyclic segregation" reaction of one pyrazine ring with two nitrogen atoms to form two quinoline rings with one nitrogen each. Density functional theory calculations showed that the intramolecular ring-forming and -opening of N-heterocycles are strongly affected by the initial hydrogen-substrate interaction.

9.
Angew Chem Int Ed Engl ; 60(36): 19598-19603, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33955126

RESUMO

On-surface synthesis is a powerful method for the fabrication of π-conjugated nanomaterials. Herein, we demonstrate chemoselective Sonogashira coupling between (trimethylsilyl)ethynyl and chlorophenyl groups in silylethynyl- and chloro-substituted partially fluorinated phenylene ethynylenes (SiCPFPEs) on Ag(111). The desilylative Sonogashira coupling occurred with high chemoselectivity up to 75 %, while the competing Ullmann and desilylative Glaser homocoupling reactions were suppressed. A combination of bond-resolved scanning tunneling microscopy/atomic force microscopy (STM/AFM) and DFT calculations revealed that the oligomers were obtained by the formation of intermolecular silylene tethers (-Me2 Si-) through CH3 -Si bond activation at 130 °C and subsequent elimination of the tethers at an elevated temperature of 200 °C.

10.
J Am Chem Soc ; 142(26): 11363-11369, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413264

RESUMO

Heterocyclic [8]circulenes are an important class of polycyclic aromatic hydrocarbon molecules because of their unique structural properties and promising applications. However, the synthesis of heterocyclic [8]circulenes is still limited and thus is an important synthetic challenge. Here we describe the first example of a π-extended diaza[8]circulene surrounded by and fused with six hexagons and two pentagons, which was successfully synthesized only by a combined in-solution and on-surface synthetic strategy. State-of-the-art scanning tunneling microscopy with a CO-functionalized tip and density functional theory calculations revealed its planar conformation and unique electronic structure.

11.
Angew Chem Int Ed Engl ; 59(27): 10842-10847, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32227562

RESUMO

Recent advances in scanning probe microscopy on surface enable not only direct observation of molecular structures but also local probe reactions, in which unstable short-lived products have been synthesized and analyzed. Now, an endergonic reaction to synthesize a single Sondheimer-Wong diyne from 6,13-dibromopentaleno[1,2-b:4,5-b']dinaphthalene by local probe chemistry on a ultra-thin film of NaCl formed on a Cu(111) surface at 4.3 K is presented. The structures of the precursor, two intermediates, and the final product were directly identified by the differential conductance imaging with a CO functionalized tip. DFT calculations revealed that the multiple-step reaction, being endergonic overall, is facilitated by temporal charging and discharging of the molecule placed in the nanometric junction between the Cu tip and the Cu substrate underneath the ultra-thin NaCl film. This local probe reaction expands possibilities to synthesize nanocarbon materials in a bottom-up manner.

12.
Chemphyschem ; 20(18): 2348-2353, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31304992

RESUMO

We study the band gap of finite N A = 7 armchair graphene nanoribbons (7-AGNRs) on Au(111) through scanning tunneling microscopy/spectroscopy combined with density functional theory calculations. The band gap of 7-AGNRs with lengths of 8 nm and more is converged to within 50 meV of its bulk value of ≈ 2 . 3 eV , while the band gap opens by several hundred meV in very short 7-AGNRs. We demonstrate that even an atomic defect, such as the addition of one hydrogen atom at the termini, has a significant effect - in this case, lowering the band gap. The effect can be captured in terms of a simple analytical model by introducing an effective "electronic length".

13.
Nano Lett ; 17(1): 50-56, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28073274

RESUMO

Bottom-up chemical reactions of selected molecular precursors on a gold surface can produce high quality graphene nanoribbons (GNRs). Here, we report on the formation of quantum dots embedded in an armchair GNR by substitutional inclusion of pairs of boron atoms into the GNR backbone. The boron inclusion is achieved through the addition of a small amount of boron substituted precursors during the formation of pristine GNRs. In the pristine region between two boron pairs, the nanoribbons show a discretization of their valence band into confined modes compatible with a Fabry-Perot resonator. Transport simulations of the scattering properties of the boron pairs reveal that they selectively confine the first valence band of the pristine ribbon while allowing an efficient electron transmission of the second one. Such band-dependent electron scattering stems from the symmetry matching between the electronic wave functions of the states from the pristine nanoribbons and those localized at the boron pairs.

14.
Phys Chem Chem Phys ; 19(24): 16251-16256, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28608893

RESUMO

Templating insulating surfaces at the nanoscale is an interesting prospect for applications that involve the adsorption of molecules or nanoparticles where electronic decoupling of the adsorbed species from the substrate is needed. In this study, we present a method to structure alkali halide surfaces at the nanoscale using a combination of low temperature plasma exposure and annealing, and characterize the surfaces by atomic force microscopy. We find that nanostructurating can be controlled by the duration of the exposure, the atomic mass of the plasma gas and the subsequent step-by-step annealing process. In contrast to previous studies with electron or high energy (few keV) ion irradiation, our approach of employing moderate particle energy (10-15 eV Ar+ or He+ ions) results in fine nanostructuring at length scales of nanometers and even single atom vacancies.

15.
Proc Natl Acad Sci U S A ; 111(11): 3968-72, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591611

RESUMO

Individual in situ polymerized fluorene chains 10-100 nm long linked by C-C bonds are pulled vertically from an Au(111) substrate by the tip of a low-temperature atomic force microscope. The conformation of the selected chains is imaged before and after manipulation using scanning tunneling microscopy. The measured force gradient shows strong and periodic variations that correspond to the step-by-step detachment of individual fluorene repeat units. These variations persist at constant intensity until the entire polymer is completely removed from the surface. Calculations based on an extended Frenkel-Kontorova model reproduce the periodicity and magnitude of these features and allow us to relate them to the detachment force and desorption energy of the repeat units. The adsorbed part of the polymer slides easily along the surface during the pulling process, leading to only small oscillations as a result of the high stiffness of the fluorenes and of their length mismatch with respect to the substrate surface structure. A significant lateral force also is caused by the sequential detachment of individual units. The gained insight into the molecule-surface interactions during sliding and pulling should aid the design of mechanoresponsive nanosystems and devices.


Assuntos
Biopolímeros/química , Fluorenos/química , Modelos Químicos , Adesividade , Fenômenos Biomecânicos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular
16.
Small ; 12(38): 5303-5311, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27531252

RESUMO

The on-surface Ullmann-type chemical reaction synthesizes polymers by linking carbons of adjacent molecules on solid surfaces. Although an organometallic compound is recently identified as the reaction intermediate, little is known about the detailed structure of the bonded organometallic species and its influence on the molecule and the reaction. Herein atomic force microscopy at low temperature is used to study the reaction with 3,9-diiododinaphtho[2,3-b:2',3'-d]thiophene (I-DNT-VW), which is polymerized on Ag(111) in vacuum. Thermally sublimated I-DNT-VW picks up a Ag surface atom, forming a CAg bond at one end after removing an iodine. The CAg bond is usually short-lived, and a CAgC organometallic bond immediately forms with an adjacent molecule. The existence of the bonded Ag atoms strongly affects the bending angle and adsorption height of the molecular unit. Density functional theory calculations reveal the bending mechanism, which reveals that charge from the terminus of the molecule is transferred via the Ag atom into the organometallic bond and strengths the local adsorption to the substrate. Such deformations vanish when the Ag atoms are removed by annealing and CC bonds are established.

17.
Small ; 12(28): 3757-63, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27276517

RESUMO

A 2D array of electronically coupled quantum boxes is fabricated by means of on-surface self-assembly assuring ultimate precision of each box. The quantum states embedded in the boxes are configured by adsorbates, whose occupancy is controlled with atomic precision. The electronic interbox coupling can be maintained or significantly reduced by proper arrangement of empty and filled boxes.

18.
Nano Lett ; 15(8): 5185-90, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26177075

RESUMO

We report on the structural characterization of junctions between atomically well-defined graphene nanoribbons (GNRs) by means of low-temperature, noncontact scanning probe microscopy. We show that the combination of simultaneously acquired frequency shift and tunneling current maps with tight binding (TB) simulations allows a comprehensive characterization of the atomic connectivity in the GNR junctions. The proposed approach can be generally applied to the investigation of graphene nanomaterials and their interconnections and is thus expected to become an important tool in the development of graphene-based circuitry.

19.
Nano Lett ; 14(11): 6127-31, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25247477

RESUMO

The underlying mechanisms of image distortions in atomic force microscopy (AFM) with CO-terminated tips are identified and studied in detail. AFM measurements of a partially fluorinated hydrocarbon molecule recorded with a CO-terminated tip are compared with state-of-the-art ab initio calculations. The hydrogenated and fluorinated carbon rings in the molecule appear different in size, which primarily originates from the different extents of their π-electrons. Further, tilting of the CO at the tip, induced by van der Waals forces, enlarges the apparent size of parts of the molecule by up to 50%. Moreover, the CO tilting in response to local Pauli repulsion causes a significant sharpening of the molecule bonds in AFM imaging.

20.
Nano Lett ; 13(12): 5803-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24144018

RESUMO

Nitrogen-vacancy defect centers (NV) contained in nanodiamonds (NDs) are a promising candidate in quantum information processing and single photon sources due to the capability of controlling their assembly on various surfaces. However, their detection with traditional optical techniques becomes challenging when probing high NV densities at the nanometer scale. Here, we combine scanning probe techniques to characterize in a monolayer the structural and electronic properties of bucky-diamonds with sizes below 10 nm. We further observe by light-assisted Kelvin- and scanning tunneling spectroscopy a clear signature of negatively charged subsurface NV centers in NDs at the nanoscale where conventional techniques are limited.


Assuntos
Nanodiamantes/química , Nitrogênio/química , Óptica e Fotônica , Luz , Fótons , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA