Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(20): 11147-11157, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32376629

RESUMO

The rhizosphere interaction between plant roots or pathogenic microbes is initiated by mutual exchange of signals. However, how soil pathogens sense host signals is largely unknown. Here, we studied early molecular events associated with host recognition in Fusarium graminearum, an economically important fungal pathogen that can infect both roots and heads of cereal crops. We found that host sensing prior to physical contact with plant roots radically alters the transcriptome and triggers nitric oxide (NO) production in F. graminearum We identified an ankyrin-repeat domain containing protein (FgANK1) required for host-mediated NO production and virulence in F. graminearum In the absence of host plant, FgANK1 resides in the cytoplasm. In response to host signals, FgANK1 translocates to the nucleus and interacts with a zinc finger transcription factor (FgZC1), also required for specific binding to the nitrate reductase (NR) promoter, NO production, and virulence in F. graminearum Our results reveal mechanistic insights into host-recognition strategies employed by soil pathogens.


Assuntos
Fusarium/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Óxido Nítrico/metabolismo , Doenças das Plantas/imunologia , Transdução de Sinais , Anquirinas/metabolismo , Produtos Agrícolas/metabolismo , Grão Comestível/metabolismo , Proteínas Fúngicas , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
2.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834507

RESUMO

Wheat (Triticum aestivum L.) growing areas in many regions of the world are subject to heat waves which are predicted to increase in frequency because of climate change. The engineering of crop plants can be a useful strategy to mitigate heat stress-caused yield losses. Previously, we have shown that heat shock factor subclass C (TaHsfC2a-B)-overexpression significantly increased the survival of heat-stressed wheat seedlings. Although previous studies have shown that the overexpression of Hsf genes enhanced the survival of plants under heat stress, the molecular mechanisms are largely unknown. To understand the underlying molecular mechanisms involved in this response, a comparative analysis of the root transcriptomes of untransformed control and TaHsfC2a-overexpressing wheat lines by RNA-sequencing have been performed. The results of RNA-sequencing indicated that the roots of TaHsfC2a-overexpressing wheat seedlings showed lower transcripts of hydrogen peroxide-producing peroxidases, which corresponds to the reduced accumulation of hydrogen peroxide along the roots. In addition, suites of genes from iron transport and nicotianamine-related gene ontology categories showed lower transcript abundance in the roots of TaHsfC2a-overexpressing wheat roots than in the untransformed control line following heat stress, which are in accordance with the reduction in iron accumulation in the roots of transgenic plants under heat stress. Overall, these results suggested the existence of ferroptosis-like cell death under heat stress in wheat roots, and that TaHsfC2a is a key player in this mechanism. To date, this is the first evidence to show that a Hsf gene plays a key role in ferroptosis under heat stress in plants. In future, the role of Hsf genes could be further studied on ferroptosis in plants to identify root-based marker genes to screen for heat-tolerant genotypes.


Assuntos
Ferroptose , Triticum , Triticum/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica , Transcriptoma , RNA/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Environ ; 44(12): 3526-3544, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34591319

RESUMO

Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.


Assuntos
Brachypodium/microbiologia , Fusarium/fisiologia , Metaboloma , Micotoxinas/metabolismo , Transcriptoma , Tricotecenos/metabolismo , Adaptação Biológica , Brachypodium/genética , Brachypodium/imunologia , Brachypodium/metabolismo , Interações entre Hospedeiro e Microrganismos , Imunidade Vegetal/fisiologia , Raízes de Plantas/microbiologia , Transdução de Sinais/imunologia
4.
Fungal Genet Biol ; 136: 103314, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31809785

RESUMO

Fusarium pseudograminearum (Fp), the causative fungal pathogen of the diseases Fusarium crown rot, is an important constraint to cereals production in many countries including Australia. Fp produces a number of secondary metabolites throughout its life cycle. One of these metabolites, the cyclic lipopeptide fusaristatin A, is encoded by a specific gene cluster containing a polyketide synthase and a three-module non-ribosomal peptide synthetase. However, a recent survey of Fp populations across Australia suggests that this cluster may only be present in a subset of isolates from Western Australia (WA). In this study, we screened 319 Fp isolates from WA and 110 Fp isolates from the Australian eastern states of New South Wales, Victoria, Queensland and South Australia to examine the distribution of this gene cluster among Australian Fp populations. The fusaristatin A gene cluster was found to be present in ~50% of Fp isolates from WA but completely absent in Fp isolates from eastern states. To determine its potential function, mutants of the fusaristatin A gene cluster were generated by disrupting the non-ribosomal peptide synthetase and polyketide synthase genes simultaneously in two different parental backgrounds. The mutants showed increased growth rates and were significantly more aggressive than their respective parental strains on wheat in crown rot pathogenicity assays. This suggested that fusaristatin A has a negative effect on fungal development and aggressiveness. The possible reasons for the geographically restricted presence of the fusaristatin A gene cluster and its role in fungal biology are discussed.


Assuntos
Depsipeptídeos/biossíntese , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Triticum/microbiologia , Austrália , DNA Fúngico , Grão Comestível/microbiologia , Proteínas Fúngicas , Fusarium/patogenicidade , Técnicas de Inativação de Genes , Interações entre Hospedeiro e Microrganismos , Família Multigênica , Peptídeo Sintases/genética , Doenças das Plantas/microbiologia , Policetídeo Sintases/genética
5.
New Phytol ; 228(4): 1431-1439, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32593207

RESUMO

Globally, fungal pathogens cause enormous crop losses and current control practices are not always effective, economical or environmentally sustainable. Tools enabling genetic management of wild pathogen populations could potentially solve many problems associated with plant diseases. A natural gene drive from a heterologous species can be used in the globally important cereal pathogen Fusarium graminearum to remove pathogenic traits from contained populations of the fungus. The gene drive element became fixed in a freely crossing population in only three generations. Repeat-induced point mutation (RIP), a natural genome defence mechanism in fungi that causes C to T mutations during meiosis in highly similar sequences, may be useful to recall the gene drive following release, should a failsafe mechanism be required. We propose that gene drive technology is a potential tool to control plant pathogens once its efficacy is demonstrated under natural settings.


Assuntos
Fusarium , Tecnologia de Impulso Genético , Fusarium/genética , Doenças das Plantas , Triticum/genética
6.
J Exp Bot ; 71(18): 5323-5332, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32459844

RESUMO

Translation is a highly dynamic cellular process whereby genetic information residing in an mRNA molecule is converted into a protein that in turn executes specific functions. However, pre-synthesized mRNA levels do not always correlate with corresponding protein levels, suggesting that translational control plays an essential role in gene regulation. A better understanding of how gene expression is regulated during translation will enable the discovery of new genes and mechanisms that control important traits in plants. Therefore, in recent years, several methods have been developed to analyse the translatome; that is, all mRNAs being actively translated at a given time, tissue, and/or developmental stage. Ribosome profiling or ribo-seq is one such technology revolutionizing our ability to analyse the translatome and in turn understand translational control of gene expression. Ribo-seq involves isolating mRNA-ribosome complexes, treating them with a RNase, and then identifying ribosome-protected mRNA regions by deep sequencing. Here, we briefly review recent ribosome profiling studies that revealed new insights into plant biology. Manipulation of novel genes identified using ribosome profiling could prove useful for increasing yield through improved biotic and abiotic stress tolerance.


Assuntos
Biossíntese de Proteínas , Ribossomos , Perfilação da Expressão Gênica , Plantas/genética , Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Estresse Fisiológico
7.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261879

RESUMO

Reactive oxygen species (ROS) are highly controlled signaling species that are involved in regulating gene expression in response to different environmental cues. The production of heat shock proteins (HSPs) is a key strategy that plants use to defend themselves against diverse stresses, including oxidative stress. In this study, expression patterns of the Arabidopsis HSP17.4CI gene, a cytosolic class I small HSP, were systematically profiled under different abiotic, biotic and oxidative stresses. Our data show that HSP17.4CI was early and highly induced by heat, cold, salt, drought and high-light. HSP17.4CI also showed high expression levels in Arabidopsis plants infected with the biotrophic pathogen Pseudomonas syringae, but not in response to the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum. Oxidative stress treatments including H2O2 and the herbicide methyl viologen led to induction of HSP17.4CI. The plant hormones abscisic acid (ABA) and salicylic acid (SA) induced the expression of HSP17.4CI, whereas methyl jasmonate (MJ) did not affect the expression level of this gene. Furthermore, we found enhanced expression of HSP17.4CI in catalase mutant plants, which are deficient in catalase 2 activity and accumulate intracellular H2O2. Taken together, data presented here suggest that HSP17.4CI expression is regulated by various signals that connect biotic and abiotic stresses with ROS and can be used as a molecular marker for oxidative stress.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Estresse Oxidativo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Resistência à Doença , Fusarium/patogenicidade , Proteínas de Choque Térmico/metabolismo , Pseudomonas syringae/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
8.
Annu Rev Microbiol ; 67: 399-416, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24024636

RESUMO

Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed that the Fusarium genome is compartmentalized into regions responsible for primary metabolism and reproduction (core genome), and pathogen virulence, host specialization, and possibly other functions (adaptive genome). Genes involved in virulence and host specialization are located on pathogenicity chromosomes within strains pathogenic to tomato (Fusarium oxysporum f. sp. lycopersici) and pea (Fusarium 'solani' f. sp. pisi). The experimental transfer of pathogenicity chromosomes from F. oxysporum f. sp. lycopersici into a nonpathogen transformed the latter into a tomato pathogen. Thus, horizontal transfer may explain the polyphyletic origins of host specificity within the genus. Additional genome-scale comparative and functional studies are needed to elucidate the evolution and diversity of pathogenicity mechanisms, which may help inform novel disease management strategies against fusarial pathogens.


Assuntos
Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Genoma Fúngico , Doenças das Plantas/microbiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fusarium/classificação , Fusarium/metabolismo , Filogenia , Virulência
9.
Proc Natl Acad Sci U S A ; 112(46): E6397-406, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26527659

RESUMO

Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater growth of the hybrids. The altered patterns of expression in the hybrids indicate decreases to the salicylic acid (SA) biosynthesis pathway and increases in the auxin [indole-3-acetic acid (IAA)] biosynthesis pathway. SA and IAA are hormones known to control stress and defense responses as well as plant growth. We found that IAA-targeted gene activity is frequently increased in hybrids, correlating with a common heterotic phenotype of greater leaf cell numbers. Reduced SA concentration and target gene responses occur in the larger hybrids and promote increased leaf cell size. We demonstrated the importance of SA action to the hybrid phenotype by manipulating endogenous SA concentrations. Increasing SA diminished heterosis in SA-reduced hybrids, whereas decreasing SA promoted growth in some hybrids and phenocopied aspects of hybrid vigor in parental lines. Pseudomonas syringae infection of hybrids demonstrated that the reductions in basal defense gene activity in these hybrids does not necessarily compromise their ability to mount a defense response comparable to the parents.


Assuntos
Arabidopsis/metabolismo , Quimera/metabolismo , Vigor Híbrido/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Arabidopsis/microbiologia , Quimera/microbiologia , Resistência à Doença/fisiologia , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Ácido Salicílico/metabolismo
10.
Fungal Genet Biol ; 100: 33-41, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28109774

RESUMO

During their interactions with plants, fungal pathogens employ large numbers of pathogenesis-associated molecules including secreted effectors and enzymes that can degrade various defence compounds. However, in many cases, in planta targets of pathogen-produced enzymes remain unknown. We identified a gene in the wheat pathogen Fusarium graminearum, encoding a putative enzyme that shows 84% sequence identity to FoTom1, a tomatinase produced by the tomato pathogen Fusarium oxysporum f. sp. lycopersici. In F. oxysporum f. sp. lycopersici, FoTom1 is a virulence factor involved in the degradation of tomato defence compound tomatine, a saponin compound. Given that wheat is unknown to produce tomatine, we tested the ability of F. graminearum to degrade tomatine and found that F. graminearum was unable to degrade tomatine in culture. However, FgTom1 degraded tomatine in vitro when heterologously expressed. To determine the possible function of FgTom1 in pathogen virulence, we generated FgTom1 knockout mutants (ΔTom1). ΔTom1 mutants were not different from wild type when grown in culture but showed significant reduction in pathogen virulence in root rot and head blight assays. In an attempt to identify possible in planta targets of FgTom1, the metabolomes of wheat heads infected with wildtype pathogen and ΔTom1 were compared and several peaks differentially abundant between treatments identified. Although the exact identity of these peaks is currently unknown, this result suggested that FgTom1 may have in planta targets in wheat, possibly tomatine-like saponin compounds. Overall, our results presented here show that FgTom1 is a new virulence factor in F. graminearum.


Assuntos
Resistência à Doença/genética , Fusarium/enzimologia , Glicosídeo Hidrolases/metabolismo , Triticum/microbiologia , Fusarium/patogenicidade , Glicosídeo Hidrolases/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Tomatina/química , Tomatina/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo
11.
Plant Biotechnol J ; 15(4): 533-543, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27735125

RESUMO

Bread wheat (Triticum aestivum L.) is an allopolyploid species containing three ancestral genomes. Therefore, three homoeologous copies exist for the majority of genes in the wheat genome. Whether different homoeologs are differentially expressed (homoeolog expression bias) in response to biotic and abiotic stresses is poorly understood. In this study, we applied a RNA-seq approach to analyse homoeolog-specific global gene expression patterns in wheat during infection by the fungal pathogen Fusarium pseudograminearum, which causes crown rot disease in cereals. To ensure specific detection of homoeologs, we first optimized read alignment methods and validated the results experimentally on genes with known patterns of subgenome-specific expression. Our global analysis identified widespread patterns of differential expression among homoeologs, indicating homoeolog expression bias underpins a large proportion of the wheat transcriptome. In particular, genes differentially expressed in response to Fusarium infection were found to be disproportionately contributed from B and D subgenomes. In addition, we found differences in the degree of responsiveness to pathogen infection among homoeologous genes with B and D homoeologs exhibiting stronger responses to pathogen infection than A genome copies. We call this latter phenomenon as 'homoeolog induction bias'. Understanding how homoeolog expression and induction biases operate may assist the improvement of biotic stress tolerance in wheat and other polyploid crop species.


Assuntos
Poliploidia , Transcriptoma/genética , Triticum/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
12.
Plant Cell ; 26(6): 2285-2309, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24920334

RESUMO

The constant struggle between plants and microbes has driven the evolution of multiple defense strategies in the host as well as offense strategies in the pathogen. To defend themselves from pathogen attack, plants often rely on elaborate signaling networks regulated by phytohormones. In turn, pathogens have adopted innovative strategies to manipulate phytohormone-regulated defenses. Tactics frequently employed by plant pathogens involve hijacking, evading, or disrupting hormone signaling pathways and/or crosstalk. As reviewed here, this is achieved mechanistically via pathogen-derived molecules known as effectors, which target phytohormone receptors, transcriptional activators and repressors, and other components of phytohormone signaling in the host plant. Herbivores and sap-sucking insects employ obligate pathogens such as viruses, phytoplasma, or symbiotic bacteria to intervene with phytohormone-regulated defenses. Overall, an improved understanding of phytohormone intervention strategies employed by pests and pathogens during their interactions with plants will ultimately lead to the development of new crop protection strategies.

13.
Ann Bot ; 119(5): 853-867, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27941094

RESUMO

Background and Aims: Fusarium crown rot caused by the fungal pathogen Fusarium pseudograminearum is a disease of wheat and barley, bearing significant economic cost. Efforts to develop effective resistance to this disease have been hampered by the quantitative nature of resistance and a lack of understanding of the factors associated with resistance and susceptibility. Here, we aimed to dissect transcriptional responses triggered in wheat by F. pseudograminearum infection. Methods: We used an RNA-seq approach to analyse host responses during a compatible interaction and identified >2700 wheat genes differentially regulated after inoculation with F. pseudograminearum . The production of a few key metabolites and plant hormones in the host during the interaction was also analysed. Key Results: Analysis of gene ontology enrichment showed that a disproportionate number of genes involved in primary and secondary metabolism, signalling and transport were differentially expressed in infected seedlings. A number of genes encoding pathogen-responsive uridine-diphosphate glycosyltransferases (UGTs) potentially involved in detoxification of the Fusarium mycotoxin deoxynivalenol (DON) were differentially expressed. Using a F. pseudograminearum DON-non-producing mutant, DON was shown to play an important role in virulence during Fusarium crown rot. An over-representation of genes involved in the phenylalanine, tryptophan and tyrosine biosynthesis pathways was observed. This was confirmed through metabolite analyses that demonstrated tryptamine and serotonin levels are induced after F. pseudograminearum inoculation. Conclusions: Overall, the observed host response in bread wheat to F. pseudograminearum during early infection exhibited enrichment of processes related to pathogen perception, defence signalling, transport and metabolism and deployment of chemical and enzymatic defences. Additional functional analyses of candidate genes should reveal their roles in disease resistance or susceptibility. Better understanding of host responses contributing to resistance and/or susceptibility will aid the development of future disease improvement strategies against this important plant pathogen.


Assuntos
Fusarium/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/genética , Triticum/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Análise de Sequência de DNA
14.
Fungal Genet Biol ; 90: 1-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26932301

RESUMO

Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Alelos , Fusarium/enzimologia , Fusarium/genética , Mutação , Tricotecenos/biossíntese , Monofosfato de Adenosina/metabolismo , DNA Fúngico , Citometria de Fluxo/métodos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Micotoxinas/metabolismo , Fenótipo , Doenças das Plantas/microbiologia , Tricotecenos/metabolismo , Triticum/microbiologia
15.
Fungal Genet Biol ; 88: 44-53, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26828593

RESUMO

A number of cereals produce the benzoxazolinone class of phytoalexins. Fusarium species pathogenic towards these hosts can typically degrade these compounds via an aminophenol intermediate, and the ability to do so is encoded by a group of genes found in the Fusarium Detoxification of Benzoxazolinone (FDB) cluster. A zinc finger transcription factor encoded by one of the FDB cluster genes (FDB3) has been proposed to regulate the expression of other genes in the cluster and hence is potentially involved in benzoxazolinone degradation. Herein we show that Fdb3 is essential for the ability of Fusarium pseudograminearum to efficiently detoxify the predominant wheat benzoxazolinone, 6-methoxy-benzoxazolin-2-one (MBOA), but not benzoxazoline-2-one (BOA). Furthermore, additional genes thought to be part of the FDB gene cluster, based upon transcriptional response to benzoxazolinones, are regulated by Fdb3. However, deletion mutants for these latter genes remain capable of benzoxazolinone degradation, suggesting that they are not essential for this process.


Assuntos
Benzoxazóis/metabolismo , Fusarium/genética , Genes Fúngicos , Família Multigênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/microbiologia , Benzoxazóis/farmacologia , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Metabólica , Doenças das Plantas , Triticum/metabolismo
16.
New Phytol ; 212(3): 770-779, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27353742

RESUMO

Plants produce a variety of secondary metabolites to defend themselves from pathogen attack, while pathogens have evolved to overcome plant defences by producing enzymes that degrade or modify these defence compounds. However, many compounds targeted by pathogen enzymes currently remain enigmatic. Identifying host compounds targeted by pathogen enzymes would enable us to understand the potential importance of such compounds in plant defence and modify them to make them insensitive to pathogen enzymes. Here, a proof of concept metabolomics-based method was developed to discover plant defence compounds modified by pathogens using two pathogen enzymes with known targets in wheat and tomato. Plant extracts treated with purified pathogen enzymes were subjected to LC-MS, and the relative abundance of metabolites before and after treatment were comparatively analysed. Using two enzymes from different pathogens the in planta targets could be found by combining relatively simple enzymology with the power of untargeted metabolomics. Key to the method is dataset simplification based on natural isotope occurrence and statistical filtering, which can be scripted. The method presented here will aid in our understanding of plant-pathogen interactions and may lead to the development of new plant protection strategies.


Assuntos
Enzimas/metabolismo , Proteínas Fúngicas/metabolismo , Metabolômica/métodos , Compostos Fitoquímicos/metabolismo , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Triticum/imunologia , Triticum/microbiologia , Espectrometria de Massas , Compostos Fitoquímicos/química , Tomatina/análogos & derivados , Tomatina/química , Tomatina/metabolismo
17.
J Exp Bot ; 67(1): 47-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26428061

RESUMO

Evolutionary success in plants is largely dependent on the successful transition from vegetative to reproductive growth. In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. Exposure to stress during this period can cause substantial yield losses in seed-producing plants. However, it is becoming increasingly evident that altering flowering time is an evolutionary strategy adopted by plants to maximize the chances of reproduction under diverse stress conditions, ranging from pathogen infection to heat, salinity, and drought. Here, recent studies that have revealed new insights into how biotic and abiotic stress signals can be integrated into floral pathways are reviewed. A better understanding of how complex environmental variables affect plant phenology is important for future genetic manipulation of crops to increase productivity under the changing climate.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fenômenos Fisiológicos Vegetais , Plantas/genética , Estresse Fisiológico , Agricultura , Evolução Biológica
18.
J Exp Bot ; 67(8): 2367-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896849

RESUMO

In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen PstDC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Fusarium/fisiologia , Mutação/genética , Doenças das Plantas/microbiologia , Proteínas Repressoras/genética , Motivos de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Correpressoras/metabolismo , Ciclopentanos/farmacologia , DNA Bacteriano/genética , Resistência à Doença/efeitos dos fármacos , Suscetibilidade a Doenças , Flores/efeitos dos fármacos , Flores/fisiologia , Fusarium/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Modelos Biológicos , Mutagênese Insercional/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oxilipinas/farmacologia , Fenótipo , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Nature ; 464(7287): 367-73, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20237561

RESUMO

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Assuntos
Cromossomos Fúngicos/genética , Fusarium/genética , Fusarium/patogenicidade , Genoma Fúngico/genética , Genômica , Evolução Molecular , Fusarium/classificação , Interações Hospedeiro-Parasita/genética , Família Multigênica/genética , Fenótipo , Filogenia , Proteoma/genética , Análise de Sequência de DNA , Sintenia/genética , Virulência/genética
20.
Fungal Genet Biol ; 83: 1-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26296598

RESUMO

The benzoxazolinone class of phytoalexins are released by wheat, maize, rye and other agriculturally important species in the Poaceae family upon pathogen attack. Benzoxazolinones show antimicrobial effects on plant pathogens, but certain fungi have evolved mechanisms to actively detoxify these compounds which may contribute to the virulence of the pathogens. In many Fusarium spp. a cluster of genes is thought to be involved in the detoxification of benzoxazolinones. However, only one enzyme encoded in the cluster has been unequivocally assigned a role in this process. The first step in the detoxification of benzoxazolinones in Fusarium spp. involves the hydrolysis of a cyclic ester bond. This reaction is encoded by the FDB1 locus in F. verticillioides but the underlying gene is yet to be cloned. We previously proposed that FDB1 encodes a γ-lactamase, and here direct evidence for this is presented. Expression analyses in the important wheat pathogen F. pseudograminearum demonstrated that amongst the three predicted γ-lactamase genes only the one designated as FDB1, part of the proposed benzoxazolinone cluster in F. pseudograminearum, was strongly responsive to exogenous benzoxazolinone application. Analysis of independent F. pseudograminearum and F. graminearum FDB1 gene deletion mutants, as well as biochemical assays, demonstrated that the γ-lactamase enzyme, encoded by FDB1, catalyses the first step in detoxification of benzoxazolinones. Overall, our results support the notion that Fusarium pathogens that cause crown rot and head blight on wheat have adopted strategies to overcome host-derived chemical defences.


Assuntos
Amidoidrolases/metabolismo , Benzoxazóis/metabolismo , Grão Comestível/microbiologia , Fusarium/enzimologia , Sesquiterpenos/metabolismo , Amidoidrolases/genética , Aminofenóis/metabolismo , Benzoxazóis/farmacologia , Catálise , Fusarium/genética , Genes Fúngicos , Inativação Metabólica , Ativação Transcricional , Fitoalexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA