Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 103(4): 443-454, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29931461

RESUMO

To date, no efficacious therapy exists that will prevent or treat the severe osteoporosis in individuals with neurologically motor-complete spinal cord injury (SCI). Recent preclinical studies have demonstrated that sclerostin antibody (Scl-Ab) can prevent sublesional bone loss after acute SCI in rats. However, it remains unknown whether sclerostin inhibition reverses substantial bone loss in the vast majority of the SCI population who have been injured for several years. This preclinical study tested the efficacy of Scl-Ab to reverse the bone loss that has occurred in a rodent model after chronic motor-complete SCI. Male Wistar rats underwent either complete spinal cord transection or only laminectomy. Twelve weeks after SCI, the rats were treated with Scl-Ab at 25 mg/kg/week or vehicle for 8 weeks. In the SCI group that did not receive Scl-Ab, 20 weeks of SCI resulted in a significant reduction of bone mineral density (BMD) and estimated bone strength, and deterioration of bone structure at the distal femoral metaphysis. Treatment with Scl-Ab largely restored BMD, bone structure, and bone mechanical strength. Histomorphometric analysis showed that Scl-Ab increased bone formation in animals with chronic SCI. In ex vivo cultures of bone marrow cells, Scl-Ab inhibited osteoclastogenesis, and promoted osteoblastogenesis accompanied by increased Tcf7, ENC1, and the OPG/RANKL ratio expression, and decreased SOST expression. Our findings demonstrate for the first time that Scl-Ab reverses the sublesional bone loss when therapy is begun after relatively prolonged spinal cord transection. The study suggests that, in addition to being a treatment option to prevent bone loss after acute SCI, sclerostin antagonism may be a valid clinical approach to reverse the severe bone loss that invariably occurs in patients with chronic SCI.


Assuntos
Densidade Óssea/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Reabsorção Óssea/etiologia , Traumatismos da Medula Espinal/complicações , Animais , Anticorpos/farmacologia , Doença Crônica , Marcadores Genéticos , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Ratos Wistar
2.
Curr Osteoporos Rep ; 16(3): 289-298, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29725836

RESUMO

PURPOSE OF REVIEW: The development of therapeutics that target anabolic pathways involved in skeletogenesis is of great importance with regard to disease resulting in bone loss, or in cases of impaired bone repair. This review aims to summarize recent developments in this area. RECENT FINDINGS: A greater understanding of how drugs that modulate signaling pathways involved in skeletogenesis exert their efficacy, and the molecular mechanisms resulting in bone formation has led to novel pharmacological bone repair strategies. Furthermore, crosstalk between pathways and molecules has suggested signaling synergies that may be exploited for enhanced tissue formation. The sequential pharmacological stimulation of the molecular cascades resulting in tissue repair is a promising strategy for the treatment of bone fractures. It is proposed that a therapeutic strategy which mimics the natural cascade of events observed during fracture repair may be achieved through temporal targeting of tissue repair pathways.


Assuntos
Remodelação Óssea , Consolidação da Fratura , Fraturas Ósseas/terapia , Osteogênese , Proteínas Adaptadoras de Transdução de Sinal , Anabolizantes , Anticorpos Neutralizantes/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/imunologia , Proteínas Morfogenéticas Ósseas/uso terapêutico , Calo Ósseo , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Fraturas não Consolidadas/terapia , Marcadores Genéticos/imunologia , Humanos , Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Transdução de Sinais , Teriparatida/uso terapêutico , Fator de Crescimento Transformador beta , Via de Sinalização Wnt
3.
Calcif Tissue Int ; 101(2): 217-228, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28391431

RESUMO

Open fractures remain a challenge in orthopedics. Current strategies to intervene are often inadequate, particularly in severe fractures or when treatment is delayed. Sclerostin is a negative regulator of bone growth and sclerostin-neutralizing antibodies (Scl-Ab) can increase bone mass and strength. The application of these antibodies to improve orthopedic repair has shown varied results, and may be dependent on the location and severity of the bony injury. We examined Scl-Ab treatment within an established rat osteotomy model with periosteal stripping analogous to open fracture repair. In one study, Scl-Ab was given 25 mg/kg bi-weekly, either from the time of fracture or from 3 weeks post-fracture up to an end-point of 12 weeks. A second study treated only delayed union open fractures that did not show radiographic union by week 6 post-fracture. Outcome measures included radiographic union, microCT analysis of bone volume and architecture, and histology. In the first study, Scl-Ab given from either 0 or 3 weeks significantly improved callus bone volume (+52%, p < 0.05 and +58%, p < 0.01) at 12 weeks, as well as strength (+48%, p < 0.05 and +70%, p < 0.05). Despite these improvements, union rate was not changed. In the second study treating only established delayed fractures, bony callus volume was similarly increased by Scl-Ab treatment; however, this did not translate to increased biomechanical strength or union improvement. Sclerostin antibody treatment has limited effects on the healing of challenging open fractures with periosteal stripping, but shows the greatest benefits on callus size and strength with earlier intervention.


Assuntos
Anticorpos/farmacologia , Densidade Óssea/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/imunologia , Calo Ósseo/patologia , Marcadores Genéticos/imunologia , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Modelos Animais de Doenças , Fraturas do Fêmur/tratamento farmacológico , Fraturas do Fêmur/patologia , Fêmur/efeitos dos fármacos , Fêmur/patologia , Consolidação da Fratura/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Osteotomia/métodos , Ratos
4.
Nat Genet ; 37(9): 945-52, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16056226

RESUMO

Human and mouse genetic and in vitro evidence has shown that canonical Wnt signaling promotes bone formation, but we found that mice lacking the canonical Wnt antagonist Dickkopf2 (Dkk2) were osteopenic. We reaffirmed the finding that canonical Wnt signaling stimulates osteogenesis, including the differentiation from preosteoblasts to osteoblasts, in cultured osteoblast differentiation models, but we also found that canonical Wnts upregulated the expression of Dkk2 in osteoblasts. Although exogenous overexpression of Dkk before the expression of endogenous canonical Wnt (Wnt7b) suppressed osteogenesis in cultures, its expression after peak Wnt7b expression induced a phenotype resembling terminal osteoblast differentiation leading to mineralization. In addition, osteoblasts from Dkk2-null mice were poorly mineralized upon osteogenic induction in cultures, and Dkk2 deficiency led to attenuation of the expression of osteogenic markers, which could be partially reversed by exogenous expression of Dkk2. Taken together with the finding that Dkk2-null mice have increased numbers of osteoids, these data indicate that Dkk2 has a role in late stages of osteoblast differentiation into mineralized matrices. Because expression of another Wnt antagonist, FRP3, differs from Dkk2 expression in rescuing Dkk2 deficiency and regulating osteoblast differentiation, the effects of Dkk2 on terminal osteoblast differentiation may not be entirely mediated by its Wnt signaling antagonistic activity.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Osteoblastos/citologia , Osteogênese/fisiologia , Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto , Feminino , Glicoproteínas/metabolismo , Corpos de Inclusão , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Osteoblastos/metabolismo , Proteínas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt
5.
Ann Rheum Dis ; 72(10): 1732-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23666928

RESUMO

OBJECTIVE: To test whether inhibition of sclerostin by a targeted monoclonal antibody (Scl-Ab) protects from bone and cartilage damage in inflammatory arthritis. Sclerostin is a potent inhibitor of bone formation and may be responsible for the low level of bone repair in patients with rheumatoid arthritis. METHODS: Human tumour necrosis factor transgenic mice (hTNFtg mice) developing inflammatory arthritis and local and bone loss were administered either vehicle, anti-TNF antibody, Scl-Ab, or a combination of both agents. Inflammation, systemic and periarticular bone loss, bone erosion and cartilage damage were evaluated at baseline (week 8) and after 3 weeks of treatment by clinical assessment, micro-CT and histology. RESULTS: Scl-Ab did not affect joint swelling or synovitis. Systemic bone loss in the spine and periarticular bone loss in the proximal tibia were completely blocked and partially reversed by inhibition of sclerostin but not by inhibition of TNF. Moreover, Scl-Ab completely arrested the progression of bone erosion in hTNFtg mice and in combination with TNF inhibition even led to significant regression of cortical bone erosions. Protective effects of Scl-Ab were also observed for the articular cartilage. CONCLUSIONS: These data suggest that sclerostin inhibition is a powerful tool to enhance bone repair in inflammatory arthritis.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Artrite Experimental/complicações , Doenças Ósseas Metabólicas/tratamento farmacológico , Glicoproteínas/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal , Animais , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/patologia , Regeneração Óssea/efeitos dos fármacos , Doenças das Cartilagens/patologia , Doenças das Cartilagens/prevenção & controle , Cartilagem Articular/patologia , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Transgênicos , Fator de Necrose Tumoral alfa/antagonistas & inibidores
6.
J Bone Joint Surg Am ; 105(15): 1145-1155, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37159527

RESUMO

BACKGROUND: Fracture repair involves the reactivation of developmental signaling cascades, including Wnt signaling that stimulates bone formation and bone regeneration. Rodent data indicate that dual inhibition of the Wnt signaling antagonists sclerostin and Dickkopf-1 (DKK1) increases callus bone volume and strength while increasing bone mass systemically. METHODS: We evaluated the effects of 16 weeks of subcutaneously administered carrier solution (vehicle, VEH), anti-sclerostin antibody (Scl-Ab), anti-DKK1 antibody (DKK1-Ab), or Scl-Ab plus DKK1-Ab combination therapy (COMBO) on ulnar osteotomy healing in nonhuman primates (cynomolgus monkeys; 20 to 22 per group). RESULTS: Scl-Ab and COMBO therapy increased systemic markers of bone formation versus VEH, with COMBO leading to synergistic increases versus Scl-Ab or DKK1-Ab monotherapies. The COMBO and Scl-Ab groups showed reduced serum markers of bone resorption versus VEH. The COMBO and DKK1-Ab groups exhibited greater callus bone mineral density (BMD), torsional stiffness, and torsional rigidity versus VEH. Lumbar vertebrae from the Scl-Ab and COMBO groups showed greater BMD and bone formation rate versus VEH, and the femoral mid-diaphysis of the Scl-Ab and COMBO groups showed greater periosteal and endocortical bone formation rates versus VEH. CONCLUSIONS: DKK1-Ab increased BMD and strength at the ulnar osteotomy site, Scl-Ab increased bone formation and BMD at uninjured skeletal sites, and Scl-Ab plus DKK1-Ab combination therapy induced all of these effects, in some cases to a greater degree versus 1 or both monotherapies. These results in nonhuman primates suggest that DKK1 preferentially regulates bone healing while sclerostin preferentially regulates systemic bone mass. CLINICAL RELEVANCE: Combination therapy with antibodies against sclerostin and DKK1 may offer a promising therapeutic strategy for both fracture treatment and fracture prevention.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Animais , Anticorpos Monoclonais/uso terapêutico , Osso e Ossos , Densidade Óssea , Osteogênese/fisiologia , Primatas
7.
Calcif Tissue Int ; 91(1): 50-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22644321

RESUMO

Sclerostin functions as an antagonist to Wnt signaling and inhibits bone-forming activity. We studied the effects of skeletal unloading and treatment with sclerostin antibody (Scl-Ab) on mesenchymal stem cell, osteoprogenitor and osteoclast precursor pools, and their relationship to bone formation and resorption. Male C57BL/6 mice (5-months-old) were hind limb unloaded for 1 week or allowed normal ambulation and treated with Scl-Ab (25 mg/kg, s.c. injections on days 1 and 4) or placebo. Unloading decreased the serum concentration of bone formation marker P1NP (-35 %), number of colony-forming units (CFU) (-38 %), alkaline phosphatase-positive CFUs (CFU-AP+) (-51 %), and calcified nodules (-35 %); and resulted in a fourfold increase in the number of osteoclast precursors. The effects of Scl-Ab treatment on unloaded and normally loaded mice were nearly identical; Scl-Ab increased serum P1NP and the number of CFU, CFU-AP+, and calcified nodules in ex vivo cultures; and increased osteoblast and bone mineralizing surfaces in vivo. Although the marrow-derived osteoclast precursor population increased with Scl-Ab, the bone osteoclast surface did not change, and the serum concentration of osteoclast activity marker TRACP5b decreased. Our data suggest that short-term Scl-Ab treatment can prevent the decrease in osteoprogenitor population associated with skeletal unloading and increase osteoblast surface and bone mineralizing surface in unloaded animals. The anabolic effects of Scl-Ab treatment on bone are preserved during skeletal unloading. These findings suggest that Scl-Ab treatment can both increase bone formation and decrease bone resorption, and provide a new means for prevention and treatment of disuse osteoporosis.


Assuntos
Anticorpos/metabolismo , Medula Óssea/metabolismo , Glicoproteínas/imunologia , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Reabsorção Óssea , Glicoproteínas/genética , Glicoproteínas/metabolismo , Elevação dos Membros Posteriores , Peptídeos e Proteínas de Sinalização Intercelular , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fosfatase Ácida Resistente a Tartarato
8.
J Exp Med ; 201(7): 1169-77, 2005 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-15809356

RESUMO

Osteoporosis is a serious problem worldwide; it is characterized by bone fractures in response to relatively mild trauma. Osteoclasts originate from the fusion of macrophages and they play a central role in bone development and remodeling via the resorption of bone. Therefore, osteoclasts are important mediators of bone loss that leads, for example, to osteoporosis. Interleukin (IL)-1 receptor (IL-1R)-associated kinase M (IRAK-M) is only expressed in cells of the myeloid lineage and it inhibits signaling downstream of IL-1R and Toll-like receptors (TLRs). However, it lacks a functional catalytic site and, thus, cannot function as a kinase. IRAK-M associates with, and prevents the dissociation of, IRAK-IRAK-4-TNF receptor-associated factor 6 from the TLR signaling complex, with resultant disruption of downstream signaling. Thus, IRAK-M acts as a dominant negative IRAK. We show here that mice that lack IRAK-M develop severe osteoporosis, which is associated with the accelerated differentiation of osteoclasts, an increase in the half-life of osteoclasts, and their activation. Ligation of IL-1R or TLRs results in hyperactivation of NF-kappaB and mitogen-activated protein kinase signaling pathways, which are essential for osteoclast differentiation. Thus, IRAK-M is a key regulator of the bone loss that is due to osteoclastic resorption of bone.


Assuntos
Diferenciação Celular/fisiologia , Osteoclastos/fisiologia , Osteoporose/etiologia , Proteínas Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Pesos e Medidas Corporais , Densitometria , Técnicas Histológicas , Quinases Associadas a Receptores de Interleucina-1 , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Quinases/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X
9.
Acta Orthop ; 82(5): 628-32, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22103277

RESUMO

BACKGROUND AND PURPOSE: Sclerostin is produced by osteocytes and is an inhibitor of bone formation. Thus, inhibition of sclerostin by a monoclonal antibody increases bone formation and improves fracture repair. Sclerostin expression is upregulated in unloaded bone and is downregulated by loading. We wanted to determine whether an anti-sclerostin antibody would stimulate metaphyseal healing in unloaded bone in a rat model. METHODS: 10-week-old male rats (n = 48) were divided into 4 groups, with 12 in each. In 24 rats, the right hind limb was unloaded by paralyzing the calf and thigh muscles with an injection of botulinum toxin A (Botox). 3 days later, all the animals had a steel screw inserted into the right proximal tibia. Starting 3 days after screw insertion, either anti-sclerostin antibody (Scl-Ab) or saline was given twice weekly. The other 24 rats did not receive Botox injections and they were treated with Scl-Ab or saline to serve as normal-loaded controls. Screw pull-out force was measured 4 weeks after insertion, as an indicator of the regenerative response of bone to trauma. RESULTS: Unloading reduced the pull-out force. Scl-Ab treatment increased the pull-out force, with or without unloading. The response to the antibody was similar in both groups, and no statistically significant relationship was found between unloading and antibody treatment. The cancellous bone at a distance from the screw showed changes in bone volume fraction that followed the same pattern as the pull-out force. INTERPRETATION: Scl-Ab increases bone formation and screw fixation to a similar degree in loaded and unloaded bone.


Assuntos
Anticorpos Monoclonais/farmacologia , Proteínas Morfogenéticas Ósseas/fisiologia , Consolidação da Fratura/fisiologia , Marcadores Genéticos/fisiologia , Osteogênese/fisiologia , Suporte de Carga/fisiologia , Animais , Anticorpos Monoclonais/administração & dosagem , Proteínas Morfogenéticas Ósseas/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Parafusos Ósseos , Consolidação da Fratura/efeitos dos fármacos , Marcadores Genéticos/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Tíbia/efeitos dos fármacos , Tíbia/fisiologia
10.
J Orthop Translat ; 31: 73-79, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34934624

RESUMO

OBJECTIVE: With the advances in biological technologies over the past 20 years, a number of new therapies to promote bone healing have been introduced. Particularly in the spinal surgery field, more unprecedented biological therapeutics become available to enhance spinal fusion success rate along with advanced instrumentation approaches. Yet surgeons may not have been well informed about their safety and efficacy profiles in order to improve clinical practices. Therefore there is a need to summarize the evidence and bring the latest progress to surgeons for better clinical services for patients. METHODS: We comprehensively reviewed the literatures in regard to the biological therapeutics for enhancement of spinal fusion published in the last two decades. RESULTS: Autograft bone is still the gold standard for bone grafting in spinal fusion surgery due to its good osteoconductive, osteoinductive, and osteogenic abilities. Accumulating evidence suggests that adding rhBMPs in combination with autograft effectively promotes the fusion rate and improves surgical outcomes. However, the stimulating effect on spinal fusion of other growth factors, including PDGF, VEGF, TGF-beta, and FGF, is not convincing, while Nell-1 and activin A exhibited preliminary efficacy. In terms of systemic therapeutic approaches, the osteoporosis drug Teriparatide has played a positive role in promoting bone healing after spinal surgery, while new medications such as denosumab and sclerostin antibodies still need further validation. Currently, other treatment, such as controlled-release formulations and carriers, are being studied for better releasing profile and the administration convenience of the active ingredients. CONCLUSION: As the world's population continues to grow older, the number of spinal fusion cases grows substantially due to increased surgical needs for spinal degenerative disease (SDD). Critical advancements in biological therapeutics that promote spinal fusion have brought better clinical outcomes to patients lately. With the accumulation of higher-level evidence, the safety and efficacy of present and emerging products are becoming more evident. These emerging therapeutics will shift the landscape of perioperative therapy for the enhancement of spinal fusion.

11.
Bone ; 149: 115967, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33892178

RESUMO

Sclerostin antibody romosozumab (EVENITY™, romosozumab-aqqg) has a dual mechanism of action on bone, increasing bone formation and decreasing bone resorption, leading to increases in bone mass and strength, and a decreased risk of fracture, and has been approved for osteoporosis treatment in patients with high risk of fragility fractures. The bone formation aspect of the response to sclerostin antibody treatment has thus far been best described as having two phases: an immediate and robust phase of anabolic bone formation, followed by a long-term response characterized by attenuated bone accrual. We herein test the hypothesis that following the immediate pharmacologic anabolic response, the changes in bone morphology result in altered (lesser) mechanical stimulation of the resident osteocytes, initiating a negative feedback signal quantifiable by a reduced osteocyte signaling response to load. This potential desensitization of the osteocytic network is probed via a novel ex vivo assessment of intracellular calcium (Ca2+) oscillations in osteocytes below the anteromedial surface of murine tibiae subjected to load after short-term (2 weeks) or long-term (8 weeks) treatment with sclerostin antibody or vehicle control. We found that for both equivalent load levels and equivalent strain levels, osteocyte Ca2+ dynamics are maintained between tibiae from the control mice and the mice that received long-term sclerostin antibody treatment. Furthermore, under matched strain environments, we found that short-term sclerostin antibody treatment results in a reduction of both the number of responsive cells and the speed of their responses, which we attribute largely to the probability that the observed cells in the short-term group are relatively immature osteocytes embedded during initial pharmacologic anabolism. Within this study, we demonstrate that osteocytes embedded following long-term sclerostin antibody treatment exhibit localized Ca2+ signaling akin to those of mature osteocytes from the vehicle group, and thus, systemic attenuation of responses such as circulating P1NP and bone formation rates likely occur as a result of processes downstream of osteocyte Ca2+ signaling.


Assuntos
Proteínas Morfogenéticas Ósseas , Osteócitos , Proteínas Adaptadoras de Transdução de Sinal , Animais , Densidade Óssea , Proteínas Morfogenéticas Ósseas/metabolismo , Marcadores Genéticos , Humanos , Camundongos , Osteócitos/metabolismo
12.
J Orthop Translat ; 29: 134-142, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34249611

RESUMO

BACKGROUND: Sclerosteosis, a severe autosomal recessive sclerosing skeletal dysplasia characterised by excessive bone formation, is caused by absence of sclerostin, a negative regulator of bone formation that binds LRP5/6 Wnt co-receptors. Current treatment is limited to surgical management of symptoms arising from bone overgrowth. This study investigated the effectiveness of sclerostin replacement therapy in a mouse model of sclerosteosis. METHODS: Recombinant wild type mouse sclerostin (mScl) and novel mScl fusion proteins containing a C-terminal human Fc (mScl hFc), or C-terminal human Fc with a poly-aspartate motif (mScl hFc PD), were produced and purified using mammalian expression and standard chromatography methods. In vitro functionality and efficacy of the recombinant proteins were evaluated using three independent biophysical techniques and an in vitro bone nodule formation assay. Pharmacokinetic properties of the proteins were investigated in vivo following a single administration to young female wild type (WT) or SOST knock out (SOST-/-) mice. In a six week proof-of-concept in vivo study, young female WT or SOST-/- mice were treated with 10 mg/kg mScl hFc or mScl hFc PD (weekly), or 4.4 mg/kg mScl (daily). The effect of recombinant sclerostin on femoral cortical and trabecular bone parameters were assessed by micro computed tomography (µCT). RESULTS: Recombinant mScl proteins bound to the extracellular domain of the Wnt co-receptor LRP6 with high affinity (nM range) and completely inhibited matrix mineralisation in vitro. Pharmacokinetic assessment following a single dose administered to WT or SOST-/- mice indicated the presence of hFc increased protein half-life from less than 5 min to at least 1.5 days. Treatment with mScl hFc PD over a six week period resulted in modest but significant reductions in trabecular volumetric bone mineral density (vBMD) and bone volume fraction (BV/TV), of 20% and 15%, respectively. CONCLUSION: Administration of recombinant mScl hFc PD partially corrected the high bone mass phenotype in SOST-/- mice, suggesting that bone-targeting of sclerostin engineered to improve half-life was able to negatively regulate bone formation in the SOST-/- mouse model of sclerosteosis. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: These findings support the concept that exogenous sclerostin can reduce bone mass, however the modest efficacy suggests that sclerostin replacement may not be an optimal strategy to mitigate excessive bone formation in sclerosteosis, hence alternative approaches should be explored.

13.
J Mol Endocrinol ; 62(2): R167-R185, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30532996

RESUMO

The discovery that two rare autosomal recessive high bone mass conditions were caused by the loss of sclerostin expression prompted studies into its role in bone homeostasis. In this article, we aim to bring together the wealth of information relating to sclerostin in bone though discussion of rare human disorders in which sclerostin is reduced or absent, sclerostin manipulation via genetic approaches and treatment with antibodies that neutralise sclerostin in animal models and in human. Together, these findings demonstrate the importance of sclerostin as a regulator of bone homeostasis and provide valuable insights into its biological mechanism of action. We summarise the current state of knowledge in the field, including the current understanding of the direct effects of sclerostin on the canonical WNT signalling pathway and the actions of sclerostin as an inhibitor of bone formation. We review the effects of sclerostin, and its inhibition, on bone at the cellular and tissue level and discuss new findings that suggest that sclerostin may also regulate adipose tissue. Finally, we highlight areas in which future research is expected to yield additional insights into the biology of sclerostin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Osso e Ossos/anatomia & histologia , Humanos , Modelos Biológicos , Mutação/genética , Via de Sinalização Wnt
14.
Ann N Y Acad Sci ; 1442(1): 91-103, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30644553

RESUMO

Prolonged mechanical unloading in bedridden patients and concurrent hormonal dysregulation represents the cause of one of the severest forms of osteoporosis, a condition for which there are very few efficacious interventions available to date. Sclerostin, a Wnt antagonist, acts as a negative regulator of bone formation. Sclerostin antibody (Scl-Ab)-mediated blockade of sclerostin can dramatically enhance bone formation and reduce bone resorption. This study was designed to investigate the therapeutic effect of the Scl-Ab on severe bone loss induced by concurrent mechanical unloading and estrogen deficiency in a hindlimb-suspended and ovariectomized rat model, and to study the cellular mechanisms underlying severe osteoporosis and Scl-Ab action. Unloading and ovariectomy resulted in severe loss of trabecular and cortical bone mass and strength; Scl-Ab can significantly counteract the deterioration of bone in unloaded and/or ovariectomized rats, with noticeably increased cortical bone formation. Scanning electron microscopy analysis revealed that unloading and ovariectomy lead to multiple morphological and structural abnormalities of osteocytes in cortical bone and the abnormalities were abolished by Scl-Ab administration. This study extends our previous conclusion that Scl-Ab represents a promising therapeutic approach for severe bone loss that occurs after being exposed to estrogen deficiency and prolonged mechanical unloading.


Assuntos
Anticorpos/uso terapêutico , Proteínas Morfogenéticas Ósseas/imunologia , Marcadores Genéticos/imunologia , Osteócitos/citologia , Ovariectomia , Animais , Anticorpos/imunologia , Feminino , Camundongos , Tamanho do Órgão , Osteoporose/prevenção & controle , Ratos , Ratos Sprague-Dawley
15.
Bone ; 42(4): 644-52, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18291742

RESUMO

To determine the role of Ca2+ signaling in activation of the Mitogen-Activated Protein Kinase (MAPK) pathway, we subjected MC3T3-E1 pre-osteoblastic cells to inhibitors of Ca2+ signaling during application of fluid shear stress (FSS). FSS only activated ERK1/2, rapidly inducing phosphorylation within 5 min of the onset of shear. Phosphorylation of ERK1/2 (pERK1/2) was significantly reduced when Ca2+i was chelated with BAPTA or when Ca2+ was removed from the flow media. Inhibition of both the L-type voltage-sensitive Ca2+ channel and the mechanosensitive cation-selective channel blocked FSS-induced pERK1/2. Inhibition of phospholipase C with U73122 significantly reduced pERK1/2. This inhibition did not result from blockage of intracellular Ca2+ release, but a loss of PKC activation. Recent data suggests a role of ATP release and purinergic receptor activation in mechanotransduction. Apyrase-mediated hydrolysis of extracellular ATP completely blocked FSS-induced phosphorylation of ERK1/2, while the addition of exogenous ATP to static cells mimicked the effects of FSS on pERK1/2. Two P2 receptors, P2Y2 and P2X7, have been associated with the anabolic responses of bone to mechanical loading. Using both iRNA techniques and primary osteoblasts isolated from P2X7 knockout mice, we found that the P2X7, but not the P2Y2, purinergic receptor was involved in ERK1/2 activation under FSS. These data suggest that FSS-induced ERK1/2 phosphorylation requires Ca2+-dependent ATP release, however both increased Ca2+i and PKC activation are needed for complete activation. Further, this ATP-dependent ERK1/2 phosphorylation is mediated through P2X7, but not P2Y2, purinergic receptors.


Assuntos
Trifosfato de Adenosina/farmacologia , Cálcio/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Animais , Cálcio/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados , Ativação Enzimática/efeitos dos fármacos , Canais Iônicos/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Osteopontina/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Receptores Purinérgicos/metabolismo
16.
Bone ; 107: 93-103, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29129759

RESUMO

Administration of antibodies to sclerostin (Scl-Ab) has been shown to increase bone mass, bone mineral density (BMD) and bone strength by increasing bone formation and decreasing bone resorption in both animal studies and human clinical trials. In these studies, the magnitude and rate of increase in bone formation markers is attenuated upon repeat dosing with Scl-Ab despite a continuous and progressive increase in BMD. Here, we investigated whether the attenuation in the bone formation response following repeated administration of Scl-Ab was associated with increased expression of secreted antagonists of Wnt signalling and determined how the circulating marker of bone formation, P1NP, responded to single, or multiple doses, of Scl-Ab four days post-dosing. Female Balb/c mice were treated with Scl-Ab and we demonstrated that the large increase in serum P1NP observed following the first dose was reduced following administration of multiple doses of Scl-Ab. This dampening of the P1NP response was not due to a change in the kinetics of the bone formation marker response, or differences in exposure to the drug. The abundance of transcripts encoding several secreted Wnt antagonists was determined in femurs collected from mice following one or six doses of Scl-Ab, or vehicle treatment. Compared with vehicle controls, expression of SOST, SOST-DC1, DKK1, DKK2, SFRP1, SFRP2, FRZB, SFRP4 and WIF1 transcripts was significantly increased (approximately 1.5-4.2 fold) following a single dose of Scl-Ab. With the exception of SFRP1, these changes were maintained or further increased following six doses of Scl-Ab and the abundance of SFRP5 was also increased. Up-regulation of these Wnt antagonists may exert a negative feedback to increased Wnt signalling induced by repeated administration of Scl-Ab and could contribute to self-regulation of the bone formation response over time. After an antibody-free period of four weeks or more, the P1NP response was comparable to the naïve response, and a second phase of treatment with Scl-Ab following an antibody-free period elicited additional gains in BMD. Together, these data demonstrate that the rapid dampening of the bone formation response in the immediate post-dose period which occurs after repeat dosing of Scl-Ab is associated with increased expression of Wnt antagonists, and a treatment-free period can restore the full bone formation response to Scl-Ab.


Assuntos
Glicoproteínas/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Fragmentos de Peptídeos/sangue , Pró-Colágeno/sangue , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos/farmacologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima
17.
Endocrinology ; 159(1): 260-271, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069393

RESUMO

Sclerostin antibody (Scl-Ab) restored bone mass and strength in the ovariectomized rat model of postmenopausal osteoporosis. Increased bone mineral density (BMD) and decreased skeletal fragility fracture risk have been reported in postmenopausal osteoporotic women receiving Scl-Ab. In males, loss of androgen leads to rapid decreases in BMD and an increased risk of fragility fractures. We hypothesized that Scl-Ab could reverse the loss of bone mass and strength caused by androgen ablation in the orchiectomized (ORX) rat model of male osteoporosis. We treated 9-month-old ORX Sprague Dawley rats (3 months after ORX) subcutaneously twice weekly with vehicle or Scl-Ab (5 or 25 mg/kg) for 6 weeks (n = 10 per group). Both doses of Scl-Ab fully reversed the BMD deficit in the lumbar spine and femur and tibia in ORX rats. Microcomputed tomography showed that the bone mass in the fifth lumbar vertebral body, femur diaphysis, and femoral neck were dose-dependently restored by Scl-Ab. The bone strength at these sites increased significantly with Scl-Ab to levels matching those of sham-operated controls and correlated positively with improvements in bone mineral content, demonstrating bone quality maintenance. Dynamic histomorphometry of the tibial diaphysis and second lumbar vertebral body demonstrated that Scl-Ab significantly increased bone formation on periosteal, endocortical, and trabecular surfaces and significantly decreased bone resorption on endocortical and trabecular surfaces. The effects of Scl-Ab on increasing bone formation and decreasing bone resorption led to restoration of bone mass and strength in androgen-deficient rats. These findings support the ongoing evaluation of Scl-Ab as a potential therapeutic agent for osteoporosis in men.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Proteínas Morfogenéticas Ósseas/imunologia , Osso e Ossos/efeitos dos fármacos , Modelos Animais de Doenças , Marcadores Genéticos/imunologia , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Absorciometria de Fóton , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/efeitos adversos , Proteínas Morfogenéticas Ósseas/metabolismo , Reabsorção Óssea/prevenção & controle , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Relação Dose-Resposta a Droga , Injeções Subcutâneas , Masculino , Terapia de Alvo Molecular , Orquiectomia , Tamanho do Órgão/efeitos dos fármacos , Osteoporose/diagnóstico por imagem , Osteoporose/patologia , Próstata/efeitos dos fármacos , Próstata/patologia , Ratos Sprague-Dawley , Glândulas Seminais/efeitos dos fármacos , Glândulas Seminais/patologia , Resistência ao Cisalhamento/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Microtomografia por Raio-X
18.
Bone ; 96: 63-75, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27789417

RESUMO

There is an unmet need for therapies that can restore bone strength and reduce fracture risk among patients at high risk of osteoporotic fracture. To address this need, bone-forming therapies that increase osteoblast activity are required to help restore bone structure and strength. Sclerostin is now recognized as a target for osteoporosis therapy. Sclerostin is predominantly secreted by the osteocyte and acts as an extracellular inhibitor of canonical Wnt signaling by binding to the receptors lipoprotein receptor-related protein-4, 5 and 6. Monoclonal antibodies to sclerostin (Scl-Ab) have been used in both clinical and in preclinical studies of osteoporosis with beneficial outcomes for bone density, structure, strength and fracture risk reduction. In this review paper, we summarize the current literature describing the effects of Scl-Ab in animal models of osteoporosis. In addition, we report new pharmacologic data from three animal studies of Scl-Ab: 1) a 12-month study evaluating bone quality in ovariectomized (OVX) rats; 2) a 6-month study evaluating bone structure and strength in adolescent cynomolgus monkeys; and 3) the effects of transition from Scl-Ab to vehicle or the RANKL inhibitor osteoprotegerin-Fc in OVX rats. Together, these results demonstrate that inhibition of sclerostin by Scl-Ab increased bone formation, and decreased bone resorption, leading to improved bone structure, bone mass and bone strength while maintaining bone quality in multiple animal models of osteoporosis. Further, gains in bone mass induced by Scl-Ab treatment were preserved by antiresorptive agents such as a RANKL inhibitor as a follow-on therapy. The bone-forming effects of Scl-Ab were unaffected by pre- or co-treatment with a bisphosphonate, and were restored following a treatment-free period after initial dosing. These data support the clinical development of Scl-Ab for treatment of conditions with low bone mass such as postmenopausal and male osteoporosis.


Assuntos
Anticorpos/uso terapêutico , Proteínas Morfogenéticas Ósseas/imunologia , Osteoporose/tratamento farmacológico , Animais , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Modelos Animais de Doenças , Humanos , Osteoporose/fisiopatologia
19.
J Bone Miner Res ; 32(5): 892-901, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27862326

RESUMO

Sclerostin antibody (Scl-Ab) increases osteoblast activity, in part through increasing modeling-based bone formation on previously quiescent surfaces. Histomorphometric studies have suggested that this might occur through conversion of bone lining cells into active osteoblasts. However, direct data demonstrating Scl-Ab-induced conversion of lining cells into active osteoblasts are lacking. Here, we used in vivo lineage tracing to determine if Scl-Ab promotes the conversion of lining cells into osteoblasts on periosteal and endocortical bone surfaces in mice. Two independent, tamoxifen-inducible lineage-tracing strategies were used to label mature osteoblasts and their progeny using the DMP1 and osteocalcin promoters. After a prolonged "chase" period, the majority of labeled cells on bone surfaces assumed a thin, quiescent morphology. Then, mice were treated with either vehicle or Scl-Ab (25 mg/kg) twice over the course of the subsequent week. After euthanization, marked cells were enumerated, their thickness quantified, and proliferation and apoptosis examined. Scl-Ab led to a significant increase in the average thickness of labeled cells on periosteal and endocortical bone surfaces, consistent with osteoblast activation. Scl-Ab did not induce proliferation of labeled cells, and Scl-Ab did not regulate apoptosis of labeled cells. Therefore, direct reactivation of quiescent bone lining cells contributes to the acute increase in osteoblast numbers after Scl-Ab treatment in mice. © 2016 American Society for Bone and Mineral Research.


Assuntos
Anticorpos/farmacologia , Osso Cortical/metabolismo , Glicoproteínas/antagonistas & inibidores , Osteoblastos/metabolismo , Periósteo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Osso Cortical/citologia , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , Periósteo/citologia
20.
Bone ; 105: 163-172, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28867373

RESUMO

Sustained elevation of parathyroid hormone (PTH) is catabolic to cortical bone, as evidenced by deterioration in bone structure (cortical porosity), and is a major factor for increased fracture risk in chronic kidney disease (CKD). Etelcalcetide (AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces PTH levels in subtotal nephrectomized (Nx) rats and in hemodialysis patients with secondary hyperparathyroidism (SHPT) in clinical studies; however, effects of etelcalcetide on bone have not been determined. In a rat model of established SHPT with renal osteodystrophy, etelcalcetide or vehicle was administered by subcutaneous (s.c.) injection to subtotal Nx rats with elevated PTH (>750pg/mL) once per day for 6weeks. Sham-operated rats receiving vehicle (s.c.) served as non-SHPT controls. Prior to treatment, significant increases in serum creatinine (2-fold), blood urea nitrogen (BUN, 3-fold), PTH (5-fold), fibroblast growth factor-23 (FGF23; 13-fold) and osteocalcin (12-fold) were observed in SHPT rats compared to non-SHPT controls. Elevations in serum creatinine and BUN were unaffected by treatment with vehicle or etelcalcetide. In contrast, etelcalcetide significantly decreased PTH, FGF23 and osteocalcin, whereas vehicle treatment did not. Cortical bone porosity increased and bone strength decreased in vehicle-treated SHPT rats compared to non-SHPT controls. Cortical bone structure improved and energy to failure was significantly greater in SHPT rats treated with etelcalcetide compared to vehicle. Mineralization lag time and marrow fibrosis were significantly reduced by etelcalcetide. In conclusion, etelcalcetide reduced bone turnover, attenuated mineralization defect and marrow fibrosis, and preserved cortical bone structure and bone strength by lowering PTH in subtotal Nx rats with established SHPT.


Assuntos
Osso Cortical/fisiopatologia , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/fisiopatologia , Nefrectomia , Peptídeos/uso terapêutico , Receptores de Detecção de Cálcio/agonistas , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Cálcio/sangue , Osso Cortical/efeitos dos fármacos , Creatinina/sangue , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Hiperparatireoidismo Secundário/sangue , Hiperplasia , Testes de Função Renal , Masculino , Osteocalcina/sangue , Glândulas Paratireoides/patologia , Hormônio Paratireóideo/sangue , Peptídeos/farmacologia , Fósforo/sangue , Ratos Sprague-Dawley , Fosfatase Ácida Resistente a Tartarato/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA