Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Cell Proteomics ; 18(12): 2418-2432, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578219

RESUMO

The bacterial pathogen Francisella tularensis possesses a noncanonical type VI secretion system (T6SS) that is required for phagosomal escape in infected macrophages. KCl stimulation has been previously used to trigger assembly and secretion of the T6SS in culture. By differential proteomics, we found here that the amounts of the T6SS proteins remained unchanged upon KCl stimulation, suggesting involvement of post-translational modifications in T6SS assembly. A phosphoproteomic analysis indeed identified a unique phosphorylation site on IglB, a key component of the T6SS sheath. Substitutions of Y139 with alanine or phosphomimetics prevented T6SS formation and abolished phagosomal escape whereas substitution with phenylalanine delayed but did not abolish phagosomal escape in J774-1 macrophages. Altogether our data demonstrated that the Y139 site of IglB plays a critical role in T6SS biogenesis, suggesting that sheath phosphorylation could participate to T6SS dynamics.Data are available via ProteomeXchange with identifier PXD013619; and on MS-Viewer, key lkaqkllxwx.


Assuntos
Francisella tularensis/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Processamento Eletrônico de Dados , Francisella tularensis/genética , Francisella tularensis/ultraestrutura , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Macrófagos/microbiologia , Estrutura Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Cloreto de Potássio/farmacologia , Processamento de Proteína Pós-Traducional , Proteômica , Espectrometria de Massas em Tandem , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/efeitos dos fármacos , Sistemas de Secreção Tipo VI/genética
2.
Biochemistry ; 56(40): 5274-5277, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28915025

RESUMO

Norcoclaurine synthase (NCS) is a Pictet-Spenglerase that catalyzes the first key step in plant benzylisoquinoline alkaloid metabolism, a compound family that includes bioactive natural products such as morphine. The enzyme has also shown great potential as a biocatalyst for the formation of chiral isoquinolines. Here we present new high-resolution X-ray crystallography data describing Thalictrum flavum NCS bound to a mechanism-inspired ligand. The structure supports two key features of the NCS "dopamine-first" mechanism: the binding of dopamine catechol to Lys-122 and the position of the carbonyl substrate binding site at the active site entrance. The catalytically vital residue Glu-110 occupies a previously unobserved ligand-bound conformation that may be catalytically significant. The potential roles of inhibitory binding and alternative amino acid conformations in the mechanism have also been revealed. This work significantly advances our understanding of the NCS mechanism and will aid future efforts to engineer the substrate scope and catalytic properties of this useful biocatalyst.


Assuntos
Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Dopamina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Thalictrum/enzimologia
3.
BMC Struct Biol ; 15: 12, 2015 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-26163297

RESUMO

BACKGROUND: Stationary phase survival proteins (Sps) were found in Firmicutes as having analogous domain compositions, and in some cases genome context, as the resuscitation promoting factors of Actinobacteria, but with a different putative peptidoglycan cleaving domain. RESULTS: The first structure of a Firmicute Sps protein YuiC from B. subtilis, is found to be a stripped down version of the cell-wall peptidoglycan hydrolase MltA. The YuiC structures are of a domain swapped dimer, although some monomer is also found in solution. The protein crystallised in the presence of pentasaccharide shows a 1,6-anhydrodisaccharide sugar product, indicating that YuiC cleaves the sugar backbone to form an anhydro product at least on lengthy incubation during crystallisation. CONCLUSIONS: The structural simplification of MltA in Sps proteins is analogous to that of the resuscitation promoting factor domains of Actinobacteria, which are stripped down versions of lysozyme and soluble lytic transglycosylase proteins.


Assuntos
Fosfatase Ácida/química , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Bacillus subtilis/química , Domínio Catalítico , Cristalografia por Raios X , Glicosiltransferases/química , Modelos Moleculares , Oligossacarídeos/metabolismo , Estrutura Secundária de Proteína
5.
BMC Struct Biol ; 14: 3, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24438169

RESUMO

BACKGROUND: Mutations in dysferlin, the first protein linked with the cell membrane repair mechanism, causes a group of muscular dystrophies called dysferlinopathies. Dysferlin is a type two-anchored membrane protein, with a single C terminal trans-membrane helix, and most of the protein lying in cytoplasm. Dysferlin contains several C2 domains and two DysF domains which are nested one inside the other. Many pathogenic point mutations fall in the DysF domain region. RESULTS: We describe the crystal structure of the human dysferlin inner DysF domain with a resolution of 1.9 Ångstroms. Most of the pathogenic mutations are part of aromatic/arginine stacks that hold the domain in a folded conformation. The high resolution of the structure show that these interactions are a mixture of parallel ring/guanadinium stacking, perpendicular H bond stacking and aliphatic chain packing. CONCLUSIONS: The high resolution structure of the Dysferlin DysF domain gives a template on which to interpret in detail the pathogenic mutations that lead to disease.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Arginina/metabolismo , Cristalografia por Raios X , Disferlina , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação de Sentido Incorreto , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Triptofano/metabolismo
7.
J Biol Chem ; 287(53): 44372-83, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23148223

RESUMO

This paper presents the structure of MsAcg (MSMEG_5246), a Mycobacterium smegmatis homologue of Mycobacterium tuberculosis Acg (Rv2032) in its reduced form at 1.6 Å resolution using x-ray crystallography. Rv2032 is one of the most induced genes under the hypoxic model of tuberculosis dormancy. The Acg family turns out to be unusual flavin mononucleotide (FMN)-binding proteins that have probably arisen by gene duplication and fusion from a classical homodimeric nitroreductase such that the monomeric protein resembles a classical nitroreductase dimer but with one active site deleted and the other active site covered by a unique lid. The FMN cofactor is not reduced by either NADH or NADPH, but the chemically reduced enzyme is capable of reduction of nitro substrates, albeit at no kinetic advantage over free FMN. The reduced enzyme is rapidly oxidized by oxygen but without any evidence for a radical state commonly seen in oxygen-sensitive nitroreductases. The presence of the unique lid domain, the lack of reduction by NAD(P)H, and the slow rate of reaction of the chemically reduced protein raises a possible alternative function of Acg proteins in FMN storage or sequestration from other biochemical pathways as part of the bacteria's adaptation to a dormancy state.


Assuntos
Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Nitrorredutases/química , Sítios de Ligação , Cristalografia por Raios X , Mononucleotídeo de Flavina/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , NAD/metabolismo , NADP/metabolismo , Nitrorredutases/genética , Nitrorredutases/metabolismo
8.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259835

RESUMO

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Assuntos
Proteínas , Software , Proteínas/química , Cristalografia por Raios X , Substâncias Macromoleculares
9.
Org Lett ; 23(16): 6342-6347, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34355910

RESUMO

Tetrahydroprotoberberine and protoberberine alkaloids are a group of biologically active natural products with complex molecular scaffolds. Isolation from plants is challenging and stereoselective synthetic routes, particularly of methylated compounds are limited, reducing the potential use of these compounds. In this work, we describe chemoenzymatic cascades toward various 13-methyl-tetrahydroprotoberberbine scaffolds using a stereoselective Pictet-Spenglerase, regioselective catechol O-methyltransferases and selective chemical Pictet-Spengler reactions. All reactions could be performed sequentially, without the workup or purification of any synthetic intermediates. Moreover, the naturally occurring alkaloids have the (+)-configuration and importantly here, a strategy to the (-)-isomers was developed. A methyl group at C-8 was also introduced with some stereocontrol, influenced by the stereochemistry at C-13. Furthermore, a single step reaction was found to convert tetrahydroprotoberberine alkaloids into the analogous protoberberine scaffold, avoiding the use of harsh oxidizing conditions or a selective oxidase. This work provides facile, selective routes toward novel analogues of bioactive alkaloids.


Assuntos
Alcaloides/química , Alcaloides de Berberina/farmacologia , Alcaloides/isolamento & purificação , Alcaloides de Berberina/química , Alcaloides de Berberina/isolamento & purificação , Produtos Biológicos , Estrutura Molecular
10.
JAC Antimicrob Resist ; 3(1): dlab028, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34223102

RESUMO

OBJECTIVES: Identification and validation of novel therapeutic targets is imperative to tackle the rise of drug resistance in tuberculosis. An essential Mur ligase-like gene (Rv3712), expected to be involved in cell-wall peptidoglycan (PG) biogenesis and conserved across mycobacteria, including the genetically depleted Mycobacterium leprae, was the primary focus of this study. METHODS: Biochemical analysis of Rv3712 was performed using inorganic phosphate release assays. The operon structure was identified using reverse-transcriptase PCR and a transcription/translation fusion vector. In vivo mycobacterial protein fragment complementation assays helped generate the interactome. RESULTS: Rv3712 was found to be an ATPase. Characterization of its operon revealed a mycobacteria-specific promoter driving the co-transcription of Rv3712 and Rv3713. The two gene products were found to interact with each other in vivo. Sequence-based functional assignments reveal that Rv3712 and Rv3713 are likely to be the mycobacterial PG precursor-modifying enzymes MurT and GatD, respectively. An in vivo network involving Mtb-MurT, regulatory proteins and cell division proteins was also identified. CONCLUSIONS: Understanding the role of the enzyme complex in the context of PG metabolism and cell division, and the implications for antimicrobial resistance and host immune responses will facilitate the design of therapeutics that are targeted specifically to M. tuberculosis.

11.
Nat Struct Mol Biol ; 12(3): 270-3, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15723078

RESUMO

Resuscitation-promoting factor (RPF) proteins reactivate stationary-phase cultures of (G+C)-rich Gram-positive bacteria including the causative agent of tuberculosis, Mycobacterium tuberculosis. We report the solution structure of the RPF domain from M. tuberculosis Rv1009 (RpfB) solved by heteronuclear multidimensional NMR. Structural homology with various glycoside hydrolases suggested that RpfB cleaved oligosaccharides. Biochemical studies indicate that a conserved active site glutamate is important for resuscitation activity. These data, as well as the presence of a clear binding pocket for a large molecule, indicate that oligosaccharide cleavage is probably the signal for revival from dormancy.


Assuntos
Proteínas de Bactérias/química , Citocinas/química , Glicosídeo Hidrolases/química , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Citocinas/metabolismo , Citocinas/fisiologia , Ácido Glutâmico/química , Espectroscopia de Ressonância Magnética , Muramidase/química , Estrutura Terciária de Proteína , Soluções/química , Homologia Estrutural de Proteína , Trissacarídeos/química , Trissacarídeos/metabolismo
12.
Curr Opin Chem Biol ; 55: 69-76, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31978651

RESUMO

Pictet-Spenglerases provide a key role in the biosynthesis of many biologically active alkaloids. There is increasing use of these biocatalysts as an alternative to traditional organic synthetic methods as they provide stereoselective and regioselective control under mild conditions. Products from these enzymes also contain privileged drug scaffolds (such as tetrahydroisoquinoline or ß-carboline moieties), so there is interest in the characterization and use of these enzymes as versatile biocatalysts to synthesize analogs of the corresponding natural products for drug discovery. This review discusses all known Pictet-Spenglerase enzymes and their applications as biocatalysts.


Assuntos
Alcaloides/biossíntese , Enzimas/metabolismo , Aldeídos/química , Bactérias/enzimologia , Biocatálise , Produtos Biológicos/química , Carbolinas/química , Ciclização , Descoberta de Drogas , Etilaminas/química , Humanos , Cetonas/química , Conformação Molecular , Plantas/enzimologia , Estereoisomerismo , Tetra-Hidroisoquinolinas/química
13.
Commun Chem ; 3(1): 170, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36703392

RESUMO

The 1-aryl-tetrahydroisoquinoline (1-aryl-THIQ) moiety is found in many biologically active molecules. Single enantiomer chemical syntheses are challenging and although some biocatalytic routes have been reported, the substrate scope is limited to certain structural motifs. The enzyme norcoclaurine synthase (NCS), involved in plant alkaloid biosynthesis, has been shown to perform stereoselective Pictet-Spengler reactions between dopamine and several carbonyl substrates. Here, benzaldehydes are explored as substrates and found to be accepted by both wild-type and mutant constructs of NCS. In particular, the variant M97V gives a range of (1 S)-aryl-THIQs in high yields (48-99%) and e.e.s (79-95%). A co-crystallised structure of the M97V variant with an active site reaction intermediate analogue is also obtained with the ligand in a pre-cyclisation conformation, consistent with (1 S)-THIQs formation. Selected THIQs are then used with catechol O-methyltransferases with exceptional regioselectivity. This work demonstrates valuable biocatalytic approaches to a range of (1 S)-THIQs.

14.
Biochem J ; 411(2): 407-14, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18215121

RESUMO

ROCK-I (Rho-associated kinase 1) is a serine/threonine kinase that can be activated by RhoA and inhibited by RhoE. ROCK-I has an N-terminal kinase domain, a central coiled-coil region and a RhoA-binding domain near the C-terminus. We have previously shown that RhoE binds to the N-terminal 420 amino acids of ROCK-I, which includes the kinase domain as well as N-terminal and C-terminal extensions. In the present study, we show that N-terminus-mediated dimerization of ROCK-I is required for RhoE binding. The central coiled-coil domain can also dimerize ROCK-I in cells, but this is insufficient in the absence of the N-terminus to allow RhoE binding. The kinase activity of ROCK-I(1-420) is required for dimerization and RhoE binding; however, inclusion of part of the coiled-coil domain compensates for lack of kinase activity, allowing RhoE to bind. N-terminus-mediated dimerization is also required for ROCK-I to induce the formation of stellate actin stress fibres in cells. These results indicate that dimerization via the N-terminus is critical for ROCK-I function in cells and for its regulation by RhoE.


Assuntos
Actinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/química , Quinases Associadas a rho/metabolismo , Animais , Células COS , Chlorocebus aethiops , Citoesqueleto/metabolismo , Dimerização , Fosforilação , Ligação Proteica , Quinases Associadas a rho/genética
15.
Trends Biochem Sci ; 29(1): 7-10, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14729326

RESUMO

The novel bacterial cytokine family--resuscitation-promoting factors (Rpfs)--share a conserved domain of uncharacterized function. Predicting the structure of this domain suggests that Rpfs possess a lysozyme-like domain. The model highlights the good conservation of residues involved in catalysis and substrate binding. A lysozyme-like function makes sense for this domain in the light of experimental characterization of the biological function of Rpfs.


Assuntos
Proteínas de Bactérias , Citocinas/química , Citocinas/genética , Muramidase/genética , Sequência de Aminoácidos , Animais , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/química , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
FEMS Microbiol Rev ; 43(5): 548-575, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31183501

RESUMO

Tuberculosis (TB), caused by the intracellular pathogen Mycobacterium tuberculosis, remains one of the leading causes of mortality across the world. There is an urgent requirement to build a robust arsenal of effective antimicrobials, targeting novel molecular mechanisms to overcome the challenges posed by the increase of antibiotic resistance in TB. Mycobacterium tuberculosis has a unique cell envelope structure and composition, containing a peptidoglycan layer that is essential for maintaining cellular integrity and for virulence. The enzymes involved in the biosynthesis, degradation, remodelling and recycling of peptidoglycan have resurfaced as attractive targets for anti-infective drug discovery. Here, we review the importance of peptidoglycan, including the structure, function and regulation of key enzymes involved in its metabolism. We also discuss known inhibitors of ATP-dependent Mur ligases, and discuss the potential for the development of pan-enzyme inhibitors targeting multiple Mur ligases.


Assuntos
Parede Celular/química , Mycobacterium tuberculosis/enzimologia , Peptidoglicano/química , Tuberculose/microbiologia , Animais , Antituberculosos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Ligases/genética , Ligases/metabolismo , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Virulência
17.
J Mol Biol ; 430(18 Pt B): 3297-3310, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-29969581

RESUMO

Heterogeneity in small heat shock proteins (sHsps) spans multiple spatiotemporal regimes-from fast fluctuations of part of the protein, to conformational variability of tertiary structure, plasticity of the interfaces, and polydispersity of the inter-converting, and co-assembling oligomers. This heterogeneity and dynamic nature of sHsps has significantly hindered their structural characterization. Atomic coordinates are particularly lacking for vertebrate sHsps, where most available structures are of extensively truncated homomers. sHsps play important roles in maintaining protein levels in the cell and therefore in organismal health and disease. HspB2 and HspB3 are vertebrate sHsps that are found co-assembled in neuromuscular cells, and variants thereof are associated with disease. Here, we present the structure of human HspB2/B3, which crystallized as a hetero-tetramer in a 3:1 ratio. In the HspB2/B3 tetramer, the four α-crystallin domains (ACDs) assemble into a flattened tetrahedron which is pierced by two non-intersecting approximate dyads. Assembly is mediated by flexible "nuts and bolts" involving IXI/V motifs from terminal regions filling ACD pockets. Parts of the N-terminal region bind in an unfolded conformation into the anti-parallel shared ACD dimer grooves. Tracts of the terminal regions are not resolved, most likely due to their disorder in the crystal lattice. This first structure of a full-length human sHsp heteromer reveals the heterogeneous interactions of the terminal regions and suggests a plasticity that is important for the cytoprotective functions of sHsps.


Assuntos
Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Sequência de Aminoácidos , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
18.
Trends Microbiol ; 14(6): 271-6, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16675219

RESUMO

When stressed, bacteria can enter various non-dividing states, which are medically important. For example, dormancy is used by Mycobacterium tuberculosis to evade host responses. A major breakthrough has been the discovery of resuscitation-promoting factor (Rpf) from Micrococcus luteus, which is an extremely potent anti-dormancy factor. Mycobacteria have multiple proteins that contain this domain. Surprisingly, the highly conserved resuscitation-promoting factor domain has strong structural similarities to lysozyme and soluble lytic transglycosylases, and it has been demonstrated that resuscitation-promoting factors cleave peptidoglycan. This suggests that the activation of dormant cells requires peptidoglycan hydrolysis, which either alters the mechanical properties of the cell wall to facilitate cell division or releases lysis products that function as anti-dormancy signals.


Assuntos
Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Viabilidade Microbiana , Peptidoglicano/metabolismo , Proteínas de Bactérias/química , Citocinas/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Esporos Bacterianos/metabolismo
19.
Sci Rep ; 6: 24739, 2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27102935

RESUMO

Aphids use chemical cues to locate hosts and find mates. The vetch aphid Megoura viciae feeds exclusively on the Fabaceae, whereas the currant-lettuce aphid Nasonovia ribisnigri alternates hosts between the Grossulariaceae and Asteraceae. Both species use alarm pheromones to warn of dangers. For N. ribisnigri this pheromone is a single component (E)-ß-farnesene but M. viciae uses a mixture of (E)-ß-farnesene, (-)-α-pinene, ß-pinene, and limonene. Odorant-binding proteins (OBP) are believed to capture and transport such semiochemicals to their receptors. Here, we report the first aphid OBP crystal structures and examine their molecular interactions with the alarm pheromone components. Our study reveals some unique structural features: 1) the lack of an internal ligand binding site; 2) a striking groove in the surface of the proteins as a putative binding site; 3) the N-terminus rather than the C-terminus occupies the site closing off the conventional OBP pocket. The results from fluorescent binding assays, molecular docking and dynamics demonstrate that OBP3 from M. viciae can bind to all four alarm pheromone components and the differential ligand binding between these very similar OBP3s from the two aphid species is determined mainly by the direct π-π interactions between ligands and the aromatic residues of OBP3s in the binding pocket.


Assuntos
Afídeos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Feromônios/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo , Animais , Fluorometria , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica
20.
Nat Struct Mol Biol ; 23(7): 647-55, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239795

RESUMO

The opposing activities of 53BP1 and BRCA1 influence pathway choice in DNA double-strand-break repair. How BRCA1 counteracts the inhibitory effect of 53BP1 on DNA resection and homologous recombination is unknown. Here we identify the site of BRCA1-BARD1 required for priming ubiquitin transfer from E2∼ubiquitin and demonstrate that BRCA1-BARD1's ubiquitin ligase activity is required for repositioning 53BP1 on damaged chromatin. We confirm H2A ubiquitination by BRCA1-BARD1 and show that an H2A-ubiquitin fusion protein promotes DNA resection and repair in BARD1-deficient cells. BRCA1-BARD1's function in homologous recombination requires the chromatin remodeler SMARCAD1. SMARCAD1 binding to H2A-ubiquitin and optimal localization to sites of damage and activity in DNA repair requires its ubiquitin-binding CUE domains. SMARCAD1 is required for 53BP1 repositioning, and the need for SMARCAD1 in olaparib or camptothecin resistance is alleviated by 53BP1 loss. Thus, BRCA1-BARD1 ligase activity and subsequent SMARCAD1-dependent chromatin remodeling are critical regulators of DNA repair.


Assuntos
Proteína BRCA1/genética , Cromatina/metabolismo , DNA Helicases/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Reparo de DNA por Recombinação , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Proteína BRCA1/metabolismo , Sítios de Ligação , Camptotecina/farmacologia , Cromatina/química , Cromatina/efeitos dos fármacos , Clonagem Molecular , Quebras de DNA de Cadeia Dupla , Clivagem do DNA/efeitos dos fármacos , DNA Helicases/metabolismo , DNA de Neoplasias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Ftalazinas/farmacologia , Piperazinas/farmacologia , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA