Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
EMBO Rep ; 25(5): 2391-2417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605278

RESUMO

ELYS is a nucleoporin that localizes to the nuclear side of the nuclear pore complex (NPC) in interphase cells. In mitosis, it serves as an assembly platform that interacts with chromatin and then with nucleoporin subcomplexes to initiate post-mitotic NPC assembly. Here we identify ELYS as a major binding partner of the membrane protein VAPB during mitosis. In mitosis, ELYS becomes phosphorylated at many sites, including a predicted FFAT (two phenylalanines in an acidic tract) motif, which mediates interaction with the MSP (major sperm protein)-domain of VAPB. Binding assays using recombinant proteins or cell lysates and co-immunoprecipitation experiments show that VAPB binds the FFAT motif of ELYS in a phosphorylation-dependent manner. In anaphase, the two proteins co-localize to the non-core region of the newly forming nuclear envelope. Depletion of VAPB results in prolonged mitosis, slow progression from meta- to anaphase and in chromosome segregation defects. Together, our results suggest a role of VAPB in mitosis upon recruitment to or release from ELYS at the non-core region of the chromatin in a phosphorylation-dependent manner.


Assuntos
Proteínas de Ligação a DNA , Mitose , Ligação Proteica , Fatores de Transcrição , Proteínas de Transporte Vesicular , Humanos , Anáfase , Cromatina/metabolismo , Segregação de Cromossomos , Células HeLa , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
J Biol Chem ; 299(3): 102932, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690276

RESUMO

The nitric oxide synthase interacting protein (NOSIP), an E3-ubiquitin ligase, is involved in various processes like neuronal development, craniofacial development, granulopoiesis, mitogenic signaling, apoptosis, and cell proliferation. The best-characterized function of NOSIP is the regulation of endothelial nitric oxide synthase activity by translocating the membrane-bound enzyme to the cytoskeleton, specifically in the G2 phase of the cell cycle. For this, NOSIP itself has to be translocated from its prominent localization, the nucleus, to the cytoplasm. Nuclear import of NOSIP was suggested to be mediated by the canonical transport receptors importin α/ß. Recently, we found NOSIP in a proteomic screen as a potential importin 13 cargo. Here, we describe the nuclear shuttling characteristics of NOSIP in living cells and in vitro and show that it does not interact directly with importin α. Instead, it formed stable complexes with several importins (-ß, -7, -ß/7, -13, and transportin 1) and was also imported into the nucleus in digitonin-permeabilized cells by these factors. In living HeLa cells, transportin 1 seems to be the major nuclear import receptor for NOSIP. A detailed analysis of the NOSIP-transportin 1 interaction revealed a high affinity and an unusual binding mode, involving the N-terminal half of transportin 1. In contrast to nuclear import, nuclear export of NOSIP seems to occur mostly by passive diffusion. Thus, our results uncover additional layers in the larger process of endothelial nitric oxide synthase regulation.


Assuntos
Ubiquitina-Proteína Ligases , beta Carioferinas , Transporte Ativo do Núcleo Celular/genética , Células HeLa , Humanos , Ligação Proteica , Óxido Nítrico Sintase Tipo III/metabolismo , Proteoma , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , beta Carioferinas/metabolismo
3.
J Cell Sci ; 134(6)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33589493

RESUMO

Nup214 is a major nucleoporin on the cytoplasmic side of the nuclear pore complex with roles in late steps of nuclear protein and mRNA export. It interacts with the nuclear export receptor CRM1 (also known as XPO1) via characteristic phenylalanine-glycine (FG) repeats in its C-terminal region. Here, we identify a classic nuclear export sequence (NES) in Nup214 that mediates Ran-dependent binding to CRM1. Nup214 versions with mutations in the NES, as well as wild-type Nup214 in the presence of the selective CRM1 inhibitor leptomycin B, accumulate in the nucleus of Nup214-overexpressing cells. Furthermore, physiological binding partners of Nup214, such as Nup62 and Nup88, are recruited to the nucleus together with Nup214. Nuclear export of mutant Nup214 can be rescued by artificial nuclear export sequences at the C-terminal end of Nup214, leading also to a correct localization of Nup88. Our results suggest a function of the Nup214 NES in the biogenesis of the nuclear pore complex and/or in terminal steps of CRM1-dependent protein export.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica
4.
Biol Chem ; 404(8-9): 791-805, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37210735

RESUMO

Soluble nuclear transport receptors and stationary nucleoporins are at the heart of the nucleocytoplasmic transport machinery. A subset of nucleoporins contains characteristic and repetitive FG (phenylalanine-glycine) motifs, which are the basis for the permeability barrier of the nuclear pore complex (NPC) that controls transport of macromolecules between the nucleus and the cytoplasm. FG-motifs can interact with each other and/or with transport receptors, mediating their translocation across the NPC. The molecular details of homotypic and heterotypic FG-interactions have been analyzed at the structural level. In this review, we focus on the interactions of nucleoporins with nuclear transport receptors. Besides the conventional FG-motifs as interaction spots, a thorough structural analysis led us to identify additional similar motifs at the binding interface between nucleoporins and transport receptors. A detailed analysis of all known human nucleoporins revealed a large number of such phenylalanine-containing motifs that are not buried in the predicted 3D-structure of the respective protein but constitute part of the solvent-accessible surface area. Only nucleoporins that are rich in conventional FG-repeats are also enriched for these motifs. This additional layer of potential low-affinity binding sites on nucleoporins for transport receptors may have a strong impact on the interaction of transport complexes with the nuclear pore and, thus, the efficiency of nucleocytoplasmic transport.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Fenilalanina , Humanos , Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Sítios de Ligação , Fenilalanina/química , Fenilalanina/metabolismo
5.
J Virol ; 96(3): e0127321, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34757845

RESUMO

After receptor-mediated endocytosis and endosomal escape, adenoviral capsids can travel via microtubule organizing centers to the nuclear envelope. Upon capsid disassembly, viral genome import into nuclei of interphase cells then occurs through nuclear pore complexes, involving the nucleoporins Nup214 and Nup358. Import also requires the activity of the classic nuclear export receptor CRM1, as it is blocked by the selective inhibitor leptomycin B. We have now used artificially enucleated as well as mitotic cells to analyze the role of an intact nucleus in different steps of the viral life cycle. In enucleated U2OS cells, viral capsids traveled to the microtubule organizing center, whereas their removal from this complex was blocked, suggesting that this step required nuclear factors. In mitotic cells, on the other hand, CRM1 promoted capsid disassembly and genome release, suggesting a role of this protein that does not require intact nuclear envelopes or nuclear pore complexes and is distinct from its function as a nuclear export receptor. Similar to enucleation, inhibition of CRM1 by leptomycin B also leads to an arrest of adenoviral capsids at the microtubule organizing center. In a small-scale screen using leptomycin B-resistant versions of CRM1, we identified a mutant, CRM1 W142A P143A, that is compromised with respect to adenoviral capsid disassembly in both interphase and mitotic cells. Strikingly, this mutant is capable of exporting cargo proteins out of the nucleus of living cells or digitonin-permeabilized cells, pointing to a role of the mutated region that is not directly linked to nuclear export. IMPORTANCE A role of nucleoporins and of soluble transport factors in adenoviral genome import into the nucleus of infected cells in interphase has previously been established. The nuclear export receptor CRM1 promotes genome import, but its precise function is not known. Using enucleated and mitotic cells, we showed that CRM1 does not simply function by exporting a crucial factor out of the nucleus that would then trigger capsid disassembly and genome import. Instead, CRM1 has an export-independent role, a notion that is also supported by a mutant, CRM1 W142A P143A, which is export competent but deficient in viral capsid disassembly, in both interphase and mitotic cells.


Assuntos
Infecções por Adenoviridae/metabolismo , Infecções por Adenoviridae/virologia , Adenoviridae/fisiologia , Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Adenoviridae/efeitos dos fármacos , Linhagem Celular , Genoma Viral , Humanos , Carioferinas/antagonistas & inibidores , Carioferinas/química , Carioferinas/genética , Microtúbulos/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Relação Estrutura-Atividade , Replicação Viral , Proteína Exportina 1
6.
J Biol Chem ; 296: 100659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33857479

RESUMO

Fused in sarcoma (FUS) is a predominantly nuclear RNA-binding protein with key functions in RNA processing and DNA damage repair. Defects in nuclear import of FUS have been linked to severe neurodegenerative diseases; hence, it is of great interest to understand this process and how it is dysregulated in disease. Transportin-1 (TNPO1) and the closely related transportin-2 have been identified as major nuclear import receptors of FUS. They bind to the C-terminal nuclear localization signal of FUS and mediate the protein's nuclear import and at the same time also suppress aberrant phase transitions of FUS in the cytoplasm. Whether FUS can utilize other nuclear transport receptors for the purpose of import and chaperoning has not been examined so far. Here, we show that FUS directly binds to different import receptors in vitro. FUS formed stable complexes not only with TNPO1 but also with transportin-3, importin ß, importin 7, or the importin ß/7 heterodimer. Binding of these alternative import receptors required arginine residues within FUS-RG/RGG motifs and was weakened by arginine methylation. Interaction with these importins suppressed FUS phase separation and reduced its sequestration into stress granules. In a permeabilized cell system, we further showed that transportin-3 had the capacity to import FUS into the nucleus, albeit with lower efficiency than TNPO1. Our data suggest that aggregation-prone RNA-binding proteins such as FUS may utilize a network of importins for chaperoning and import, similar to histones and ribosomal proteins.


Assuntos
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Chaperonas Moleculares/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , beta Carioferinas/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Carioferinas/genética , Chaperonas Moleculares/genética , Sinais de Localização Nuclear , Ligação Proteica , Proteína FUS de Ligação a RNA/genética , Receptores Citoplasmáticos e Nucleares/genética , beta Carioferinas/genética
7.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32161167

RESUMO

Nuclear import of viral genomes is an important step during the life cycle of adenoviruses (AdV), requiring soluble cellular factors as well as proteins of the nuclear pore complex (NPC). We addressed the role of the cytoplasmic nucleoporin Nup358 during adenoviral genome delivery by performing depletion/reconstitution experiments and time-resolved quantification of adenoviral genome import. Nup358-depleted cells displayed reduced efficiencies of nuclear import of adenoviral genomes, and the nuclear import receptor transportin 1 became rate limiting under these conditions. Furthermore, we identified a minimal N-terminal region of Nup358 that was sufficient to compensate for the import defect. Our data support a model where Nup358 functions as an assembly platform that promotes the formation of transport complexes, allowing AdV to exploit a physiological protein import pathway for accelerated transport of its DNA.IMPORTANCE Nuclear import of viral genomes is an essential step to initiate productive infection for several nuclear replicating DNA viruses. On the other hand, DNA is not a physiological nuclear import substrate; consequently, viruses have to exploit existing physiological transport routes. Here, we show that adenoviruses use the nucleoporin Nup358 to increase the efficiency of adenoviral genome import. In its absence, genome import efficiency is reduced and the transport receptor transportin 1 becomes rate limiting. We show that the N-terminal half of Nup358 is sufficient to drive genome import and identify a transportin 1 binding region. In our model, adenovirus genome import exploits an existing protein import pathway and Nup358 serves as an assembly platform for transport complexes.


Assuntos
Adenoviridae/genética , Adenoviridae/fisiologia , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Genoma Viral , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/química , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , beta Carioferinas/química
8.
Biochem J ; 477(1): 23-44, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31913454

RESUMO

The genetic information encoded in nuclear mRNA destined to reach the cytoplasm requires the interaction of the mRNA molecule with the nuclear pore complex (NPC) for the process of mRNA export. Numerous proteins have important roles in the transport of mRNA out of the nucleus. The NPC embedded in the nuclear envelope is the port of exit for mRNA and is composed of ∼30 unique proteins, nucleoporins, forming the distinct structures of the nuclear basket, the pore channel and cytoplasmic filaments. Together, they serve as a rather stationary complex engaged in mRNA export, while a variety of soluble protein factors dynamically assemble on the mRNA and mediate the interactions of the mRNA with the NPC. mRNA export factors are recruited to and dissociate from the mRNA at the site of transcription on the gene, during the journey through the nucleoplasm and at the nuclear pore at the final stages of export. In this review, we present the current knowledge derived from biochemical, molecular, structural and imaging studies, to develop a high-resolution picture of the many events that culminate in the successful passage of the mRNA out of the nucleus.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Transporte de RNA/fisiologia , RNA Mensageiro/metabolismo , Animais , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/metabolismo , Citoplasma/metabolismo , Humanos , Membrana Nuclear/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , RNA Viral/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
9.
PLoS Genet ; 14(12): e1007845, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30543681

RESUMO

Nucleoporins build the nuclear pore complex (NPC), which, as sole gate for nuclear-cytoplasmic exchange, is of outmost importance for normal cell function. Defects in the process of nucleocytoplasmic transport or in its machinery have been frequently described in human diseases, such as cancer and neurodegenerative disorders, but only in a few cases of developmental disorders. Here we report biallelic mutations in the nucleoporin NUP88 as a novel cause of lethal fetal akinesia deformation sequence (FADS) in two families. FADS comprises a spectrum of clinically and genetically heterogeneous disorders with congenital malformations related to impaired fetal movement. We show that genetic disruption of nup88 in zebrafish results in pleiotropic developmental defects reminiscent of those seen in affected human fetuses, including locomotor defects as well as defects at neuromuscular junctions. Phenotypic alterations become visible at distinct developmental stages, both in affected human fetuses and in zebrafish, whereas early stages of development are apparently normal. The zebrafish phenotypes caused by nup88 deficiency are rescued by expressing wild-type Nup88 but not the disease-linked mutant forms of Nup88. Furthermore, using human and mouse cell lines as well as immunohistochemistry on fetal muscle tissue, we demonstrate that NUP88 depletion affects rapsyn, a key regulator of the muscle nicotinic acetylcholine receptor at the neuromuscular junction. Together, our studies provide the first characterization of NUP88 in vertebrate development, expand our understanding of the molecular events causing FADS, and suggest that variants in NUP88 should be investigated in cases of FADS.


Assuntos
Artrogripose/genética , Genes Letais , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Artrogripose/embriologia , Artrogripose/fisiopatologia , Consanguinidade , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Proteínas Musculares/metabolismo , Junção Neuromuscular/fisiopatologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/deficiência , Linhagem , Gravidez , Conformação Proteica , Receptores Nicotínicos/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/anormalidades , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
10.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948065

RESUMO

VAPB (Vesicle-Associated-membrane Protein-associated protein B) is a tail-anchored membrane protein of the endoplasmic reticulum that can also be detected at the inner nuclear membrane. As a component of many contact sites between the endoplasmic reticulum and other organelles, VAPB is engaged in multiple protein interactions with a plethora of binding partners. A mutant version of VAPB, P56S-VAPB, which results from a single point mutation, is involved in a familial form of amyotrophic lateral sclerosis (ALS8). We performed RAPIDS (rapamycin- and APEX-dependent identification of proteins by SILAC) to identify proteins that interact with or are in close proximity to P56S-VAPB. The mutation abrogates the interaction of VAPB with many known binding partners. Here, we identify Sequestosome 1 (SQSTM1), a well-known autophagic adapter protein, as a major interaction/proximity partner of P56S-VAPB. Remarkably, not only the mutant protein, but also wild-type VAPB interacts with SQSTM1, as shown by proximity ligation assays and co-immunoprecipiation experiments.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação Puntual , Proteína Sequestossoma-1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Membrana Nuclear/metabolismo , Conformação Proteica , Transporte Proteico , Proteômica , Proteína Sequestossoma-1/química , Sirolimo/farmacologia , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
11.
J Biol Chem ; 294(44): 16241-16254, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519755

RESUMO

Vesicle-associated membrane protein-associated protein B (VAPB) is a tail-anchored protein that is present at several contact sites of the endoplasmic reticulum (ER). We now show by immunoelectron microscopy that VAPB also localizes to the inner nuclear membrane (INM). Using a modified enhanced ascorbate peroxidase 2 (APEX2) approach with rapamycin-dependent targeting of the peroxidase to a protein of interest, we searched for proteins that are in close proximity to VAPB, particularly at the INM. In combination with stable isotope labeling with amino acids in cell culture (SILAC), we confirmed many well-known interaction partners at the level of the ER with a clear distinction between specific and nonspecific hits. Furthermore, we identified emerin, TMEM43, and ELYS as potential interaction partners of VAPB at the INM and the nuclear pore complex, respectively.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Enzimas Multifuncionais/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Marcação por Isótopo , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica/métodos , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Transporte Proteico , Proteômica , Sirolimo/metabolismo , Fatores de Transcrição/metabolismo
12.
J Biol Chem ; 294(31): 11741-11750, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31186352

RESUMO

The Notch receptor is a key mediator of developmental programs and cell-fate decisions. Imbalanced Notch signaling leads to developmental disorders and cancer. To fully characterize the Notch signaling pathway and exploit it in novel therapeutic interventions, a comprehensive view on the regulation and requirements of Notch signaling is needed. Notch is regulated at different levels, ranging from ligand binding, stability to endocytosis. Using an array of different techniques, including reporter gene assays, immunocytochemistry, and ChIP-qPCR we show here, to the best of our knowledge for the first time, regulation of Notch signaling at the level of the nuclear pore. We found that the nuclear pore protein Nup214 (nucleoporin 214) and its interaction partner Nup88 negatively regulate Notch signaling in vitro and in vivo in zebrafish. In mammalian cells, loss of Nup88/214 inhibited nuclear export of recombination signal-binding protein for immunoglobulin κJ region (RBP-J), the DNA-binding component of the Notch pathway. This inhibition increased binding of RBP-J to its cognate promoter regions, resulting in increased downstream Notch signaling. Interestingly, we also found that NUP214 fusion proteins, causative for certain cases of T-cell acute lymphatic leukemia, potentially contribute to tumorigenesis via a Notch-dependent mechanism. In summary, the nuclear pore components Nup88/214 suppress Notch signaling in vitro, and in zebrafish, nuclear RBP-J levels are rate-limiting factors for Notch signaling in mammalian cells, and regulation of nucleocytoplasmic transport of RBP-J may contribute to fine-tuning Notch activity in cells.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Notch/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição HES-1/antagonistas & inibidores , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
J Cell Sci ; 131(22)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30333138

RESUMO

Although GCN5L1 (also known as BLOC1S1) facilitates mitochondrial protein acetylation and controls endosomal-lysosomal trafficking, the mechanisms underpinning these disparate effects are unclear. As microtubule acetylation modulates endosome-lysosome trafficking, we reasoned that exploring the role of GCN5L1 in this biology may enhance our understanding of GCN5L1-mediated protein acetylation. We show that α-tubulin acetylation is reduced in GCN5L1-knockout hepatocytes and restored by GCN5L1 reconstitution. Furthermore, GCN5L1 binds to the α-tubulin acetyltransferase αTAT1, and GCN5L1-mediated α-tubulin acetylation is dependent on αTAT1. Given that cytosolic GCN5L1 has been identified as a component of numerous multiprotein complexes, we explored whether novel interacting partners contribute to this regulation. We identify RanBP2 as a novel interacting partner of GCN5L1 and αTAT1. Genetic silencing of RanBP2 phenocopies GCN5L1 depletion by reducing α-tubulin acetylation, and we find that RanBP2 possesses a tubulin-binding domain, which recruits GCN5L1 to α-tubulin. Finally, we find that genetic depletion of GCN5L1 promotes perinuclear lysosome accumulation and histone deacetylase inhibition partially restores lysosomal positioning. We conclude that the interactions of GCN5L1, RanBP2 and αTAT1 function in concert to control α-tubulin acetylation and may contribute towards the regulation of cellular lysosome positioning. This article has an associated First Person interview with the first author of the paper.


Assuntos
Acetiltransferases/metabolismo , Fígado/metabolismo , Lisossomos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Acetilação , Animais , Células HEK293 , Células HeLa , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microtúbulos/metabolismo , Proteínas Mitocondriais , Cultura Primária de Células , Transfecção
14.
Mol Cell Proteomics ; 17(7): 1337-1353, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29666159

RESUMO

Importin 13 is a member of the importin ß family of transport receptors. Unlike most family members, importin 13 mediates both, nuclear protein import and export. To search for novel importin 13 cargoes, we used stable isotope labeling of amino acids in cell culture (SILAC) and mass spectrometry. Using stringent criteria, we identified 255 importin 13 substrates, including the known cargoes Ubc9, Mago and eIF1A, and validate many of them as transport cargoes by extensive biochemical and cell biological characterization. Several novel cargoes can also be transported by the export receptor CRM1, demonstrating a clear redundancy in receptor choice. Using importin 13 mutants, we show that many of the novel substrates contact regions on the transport receptor that are not used by Ubc9, Mago or eIF1A. Together, this study significantly expands the repertoire of importin 13 cargoes and sets the basis for a more detailed characterization of this extremely versatile transport receptor.


Assuntos
Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Células HeLa , Humanos , Marcação por Isótopo , Ligação Proteica , Proteômica , Receptores Citoplasmáticos e Nucleares/metabolismo , Reprodutibilidade dos Testes , Proteína ran de Ligação ao GTP/metabolismo , Proteína Exportina 1
15.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29997215

RESUMO

Adenoviruses are DNA viruses with a lytic infection cycle. Following the fate of incoming as well as recently replicated genomes during infections is a challenge. In this study, we used the ANCHOR3 technology based on a bacterial partitioning system to establish a versatile in vivo imaging system for adenoviral genomes. The system allows the visualization of both individual incoming and newly replicated genomes in real time in living cells. We demonstrate that incoming adenoviral genomes are attached to condensed cellular chromatin during mitosis, facilitating the equal distribution of viral genomes in daughter cells after cell division. We show that the formation of replication centers occurs in conjunction with in vivo genome replication and determine replication rates. Visualization of adenoviral DNA revealed that adenoviruses exhibit two kinetically distinct phases of genome replication. Low-level replication occurred during early replication, while high-level replication was associated with late replication phases. The transition between these phases occurred concomitantly with morphological changes of viral replication compartments and with the appearance of virus-induced postreplication (ViPR) bodies, identified by the nucleolar protein Mybbp1A. Taken together, our real-time genome imaging system revealed hitherto uncharacterized features of adenoviral genomes in vivo The system is able to identify novel spatiotemporal aspects of the adenovirus life cycle and is potentially transferable to other viral systems with a double-stranded DNA phase.IMPORTANCE Viruses must deliver their genomes to host cells to ensure replication and propagation. Characterizing the fate of viral genomes is crucial to understand the viral life cycle and the fate of virus-derived vector tools. Here, we integrated the ANCHOR3 system, an in vivo DNA-tagging technology, into the adenoviral genome for real-time genome detection. ANCHOR3 tagging permitted the in vivo visualization of incoming genomes at the onset of infection and of replicated genomes at late phases of infection. Using this system, we show viral genome attachment to condensed host chromosomes during mitosis, identifying this mechanism as a mode of cell-to-cell transfer. We characterize the spatiotemporal organization of adenovirus replication and identify two kinetically distinct phases of viral genome replication. The ANCHOR3 system is the first technique that allows the continuous visualization of adenoviral genomes during the entire virus life cycle, opening the way for further in-depth study.


Assuntos
Adenoviridae/fisiologia , Cromatina/virologia , DNA Viral/metabolismo , Replicação Viral , Adenoviridae/genética , Linhagem Celular , Cromatina/genética , Proteínas de Ligação a DNA , Genoma Viral , Células HEK293 , Humanos , Cinética , Estágios do Ciclo de Vida , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a RNA , Coloração e Rotulagem , Fatores de Transcrição , Ligação Viral
16.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650545

RESUMO

LRRC59 (leucine-rich repeat-containing protein 59) is a tail-anchored protein with a single transmembrane domain close to its C-terminal end that localizes to the endoplasmic reticulum (ER) and the nuclear envelope. Here, we investigate the mechanisms of membrane integration of LRRC59 and its targeting to the inner nuclear membrane (INM). Using purified microsomes, we show that LRRC59 can be post-translationally inserted into ER-derived membranes. The TRC-pathway, a major route for post-translational membrane insertion, is not required for LRRC59. Like emerin, another tail-anchored protein, LRRC59 reaches the INM, as demonstrated by rapamycin-dependent dimerization assays. Using different approaches to inhibit importin α/ß-dependent nuclear import of soluble proteins, we show that the classic nuclear transport machinery does not play a major role in INM-targeting of LRRC59. Instead, the size of the cytoplasmic domain of LRRC59 is an important feature, suggesting that targeting is governed by passive diffusion.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Microssomos/metabolismo , Modelos Biológicos , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Relação Estrutura-Atividade , beta Carioferinas/metabolismo
17.
J Cell Sci ; 129(3): 502-16, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26675233

RESUMO

Emerin is a tail-anchored protein that is found predominantly at the inner nuclear membrane (INM), where it associates with components of the nuclear lamina. Mutations in the emerin gene cause Emery-Dreifuss muscular dystrophy (EDMD), an X-linked recessive disease. Here, we report that the TRC40/GET pathway for post-translational insertion of tail-anchored proteins into membranes is involved in emerin-trafficking. Using proximity ligation assays, we show that emerin interacts with TRC40 in situ. Emerin expressed in bacteria or in a cell-free lysate was inserted into microsomal membranes in an ATP- and TRC40-dependent manner. Dominant-negative fragments of the TRC40-receptor proteins WRB and CAML (also known as CAMLG) inhibited membrane insertion. A rapamycin-based dimerization assay revealed correct transport of wild-type emerin to the INM, whereas TRC40-binding, membrane integration and INM-targeting of emerin mutant proteins that occur in EDMD was disturbed. Our results suggest that the mode of membrane integration contributes to correct targeting of emerin to the INM.


Assuntos
ATPases Transportadoras de Arsenito/metabolismo , Proteínas de Membrana/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Mutação/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Microssomos/metabolismo , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/genética , Transporte Proteico/genética
18.
J Biol Chem ; 291(44): 23068-23083, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27613868

RESUMO

Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A)+ RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A)+ RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors.


Assuntos
Chaperonas de Histonas/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Poli A/metabolismo , RNA Mensageiro/metabolismo , Proteína Sequestossoma-1/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas de Ligação a DNA , Chaperonas de Histonas/genética , Humanos , Corpos de Inclusão Intranuclear/genética , Carioferinas/genética , Carioferinas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Poli A/genética , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Sequestossoma-1/genética , Fatores de Transcrição/genética , Proteína Exportina 1
19.
Proc Natl Acad Sci U S A ; 110(52): 21000-5, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324140

RESUMO

We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution. Using conventional fluorophores, we have imaged single nuclear pore complexes in the nuclear membrane and aggregates of GFP-conjugated Tau protein in three dimensions. Multicolor ISM was shown on cytoskeletal-associated structural proteins and on 3D four-color images including MitoTracker and Hoechst staining. The simple adaptation of conventional CSD equipment allows superresolution investigations of a broad variety of cell biological questions.


Assuntos
Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas
20.
Biophys J ; 109(2): 277-86, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200863

RESUMO

The nuclear pore complex mediates nucleocytoplasmic transport of macromolecules in eukaryotic cells. Transport through the pore is restricted by a hydrophobic selectivity filter comprising disordered phenylalanine-glycine-rich repeats of nuclear pore proteins. Exchange through the pore requires specialized transport receptors, called exportins and importins, that interact with cargo proteins in a RanGTP-dependent manner. These receptors are highly flexible superhelical structures composed of HEAT-repeat motifs that adopt various degrees of extension in crystal structures. Here, we performed molecular-dynamics simulations using crystal structures of Importin-ß in its free form or in complex with nuclear localization signal peptides as the starting conformation. Our simulations predicted that initially compact structures would adopt extended conformations in hydrophilic buffers, while contracted conformations would dominate in more hydrophobic solutions, mimicking the environment of the nuclear pore. We confirmed this experimentally by Förster resonance energy transfer experiments using dual-fluorophore-labeled Importin-ß. These observations explain seemingly contradictory crystal structures and suggest a possible mechanism for cargo protection during passage of the nuclear pore. Such hydrophobic switching may be a general principle for environmental control of protein function.


Assuntos
beta Carioferinas/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Maleabilidade , Conformação Proteica , Soluções , Solventes/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA