Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 100(2): 633-672, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751166

RESUMO

Drugs are prescribed to manage or prevent symptoms and diseases, but may sometimes cause unexpected toxicity to muscles. The symptomatology and clinical manifestations of the myotoxic reaction can vary significantly between drugs and between patients on the same drug. This poses a challenge on how to recognize and prevent the occurrence of drug-induced muscle toxicity. The key to appropriate management of myotoxicity is prompt recognition that symptoms of patients may be drug related and to be aware that inter-individual differences in susceptibility to drug-induced toxicity exist. The most prevalent and well-documented drug class with unintended myotoxicity are the statins, but even today new classes of drugs with unintended myotoxicity are being discovered. This review will start off by explaining the principles of drug-induced myotoxicity and the different terminologies used to distinguish between grades of toxicity. The main part of the review will focus on the most important pathogenic mechanisms by which drugs can cause muscle toxicity, which will be exemplified by drugs with high risk of muscle toxicity. This will be done by providing information on key clinical and laboratory aspects, muscle electromyography patterns and biopsy results, and pathological mechanism and management for a specific drug from each pathogenic classification. In addition, rather new classes of drugs with unintended myotoxicity will be highlighted. Furthermore, we will explain why it is so difficult to diagnose drug-induced myotoxicity, and which tests can be used as a diagnostic aid. Lastly, a brief description will be given of how to manage and treat drug-induced myotoxicity.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Doenças Musculares/induzido quimicamente , Animais , Humanos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/epidemiologia , Doenças Musculares/fisiopatologia , Doenças Musculares/terapia , Miotoxicidade , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco
2.
Pflugers Arch ; 475(11): 1265-1281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656229

RESUMO

Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the Musculus gastrocnemius response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O2 normobaric hypoxia or normoxia (20.9% O2) for six hours (n = 12 per group). Whole-body energy metabolism and the transcriptome response of the M. gastrocnemius were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (Trib3). Trib3 positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that ß-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O2 normobaric hypoxia impacts M. gastrocnemius via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.

3.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G539-G555, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847725

RESUMO

The small intestine requires energy to exert its important role in nutrient uptake and barrier function. Pigs are an important source of food and a model for humans. Young piglets and infants can suffer from periods of insufficient food intake. Whether this functionally affects the small intestinal epithelial cell (IEC) metabolic capacity and how this may be associated with an increased vulnerability to intestinal disease is unknown. We therefore performed a 48-h fasting intervention in young piglets. After feeding a standard weaning diet for 2 wk, 6-wk-old piglets (n = 16/group) were fasted for 48 h, and midjejunal IECs were collected upon euthanasia. Functional metabolism of isolated IECs was analyzed with the Seahorse XF analyzer and gene expression was assessed using RNA-sequencing. Fasting decreased the mitochondrial and glycolytic function of the IECs by 50% and 45%, respectively (P < 0.0001), signifying that overall metabolic function was decreased. The RNA-sequencing results corroborated our functional metabolic measurements, showing that particularly pathways related to mitochondrial energy production were decreased. Besides oxidative metabolic pathways, decreased cell-cycle progression pathways were most regulated in the fasted piglets, which were confirmed by 43% reduction of Ki67-stained cells (P < 0.05). Finally, the expression of barrier function genes was reduced upon fasting. In conclusion, we found that the decreased IEC energy metabolic function in response to fasting is supported by a decreased gene expression of mitochondrial pathways and is likely linked to the observed decreased intestinal cell proliferation and barrier function, providing insight into the vulnerability of piglets, and infants, to decreased food intake.NEW & NOTEWORTHY Fasting is identified as one of the underlying causes potentiating diarrhea development, both in piglets and humans. With this study, we demonstrate that fasting decreases the metabolism of intestinal epithelial cells, on a functional and transcriptional level. Transcriptional and histological data also show decreased intestinal cell proliferation. As such, fasting-induced intestinal energy shortage could contribute to intestinal dysfunction upon fasting.


Assuntos
Jejum , Intestino Delgado , Humanos , Animais , Suínos , Intestino Delgado/metabolismo , Desmame , Proliferação de Células , RNA/metabolismo , Mucosa Intestinal/metabolismo
4.
Mol Reprod Dev ; 90(7): 491-502, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35775400

RESUMO

Metabolic demands of modern hybrid sows have increased over the years, which increases the chance that sows enter a substantial negative energy balance (NEB) during lactation. This NEB can negatively impact reproductive outcome, which is especially evident in primiparous sows causing a reduced second parity reproductive performance. The negative effects of the lactational NEB on reproductive performance can be partly explained by the influence of the premating metabolic state, during and after lactation, on the development of follicles from which oocytes will give rise to the next litter. In addition, the degree and type of body tissue mobilization during lactation that is, adipose tissue or lean mass, highly influences follicular development. Research investigating relations between the premating metabolic state and follicular and oocyte competence in modern hybrid sows, which experience higher metabolic demands during lactation, is limited. In this review we summarize current knowledge of physiological relations between the metabolic state of modern hybrid sows and follicular developmental competence. In addition, we discuss potential implications of these relations for current sow management strategies.


Assuntos
Lactação , Reprodução , Gravidez , Suínos , Animais , Feminino , Tamanho da Ninhada de Vivíparos , Desmame , Paridade , Lactação/metabolismo
5.
J Nutr ; 153(12): 3448-3457, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858726

RESUMO

BACKGROUND: Prolonged lactation provides substantial health benefits, possibly because of galactose as part of milk sugar lactose. Isocaloric replacement of dietary glucose [16 energy%(en%)] with galactose within a normal diet (64en% carbohydrates) during a 3-wk postweaning period provided substantial benefits on short- and long-term physiologic and metabolic parameters at the whole-body level and liver in female mice, which might be attributable to intestinal function. OBJECTIVES: This study aimed to investigate if partial dietary replacement of glucose with galactose alters intestinal metabolism underlying hepatic health effects. METHODS: Proximal intestinal mucosa gene profiles in female mice were analyzed using RNAseq technology, validated, and correlated with hepatic health parameters. RESULTS: Transcriptome analysis revealed that the presence of galactose primarily affected the pathways involved in energy metabolism. A consistently higher expression was observed in the subset of mitochondrial transcripts (78 of 80, all P.adj < 0.1). Oxidative phosphorylation (OXPHOS) represented the most upregulated process (all top 10 pathways) independent of the total mitochondrial mass (P = 0.75). Moreover, galactose consistently upregulated carbohydrate metabolism pathways, specifically glycolysis till acetyl-CoA production and fructose metabolism. Also, the expression of transcripts involved in these pathways was negatively correlated with circulating serum amyloid A3 protein, a marker of hepatic inflammation [R (-0.61, -0.5), P (0.002, 0.01)]. Accordingly, CD163+ cells were decreased in the liver. Additionally, the expression of key fructolytic enzymes in the small intestinal mucosa was negatively correlated with triglyceride accumulation in the liver [R (-0.45, -0.4), P (0.03, 0.05)]. CONCLUSIONS: To our knowledge, our results show for the first time the role of galactose as an OXPHOS activator in vivo. Moreover, the concept of intestinal cells acting as the body's metabolic gatekeeper is strongly supported, as they alter substrate availability and thereby contribute to the maintenance of metabolic homeostasis, protecting other organs, as evidenced by their potential ability to shield the liver from the potentially detrimental effects of fructose.


Assuntos
Galactose , Fosforilação Oxidativa , Camundongos , Feminino , Animais , Galactose/farmacologia , Dieta , Glucose/metabolismo , Fígado/metabolismo , Mucosa Intestinal/metabolismo , Frutose
6.
FASEB J ; 36(8): e22435, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35830259

RESUMO

Non-alcoholic steatohepatitis (NASH) is associated with a disturbed metabolism in liver, insulin resistance, and excessive accumulation of ectopic fat. Branched-chain amino acids (BCAAs) may beneficially modulate hepatic lipids, however, it remains unclear whether individual BCAAs can attenuate already established NASH and associated oxidative-inflammatory stress. After a 26 weeks run-in on fast food diet (FFD), obese Ldlr-/-.Leiden mice were treated for another 12 weeks with either valine or isoleucine (3% of FFD) and then compared to FFD controls. Valine and isoleucine did not affect obesity, dyslipidemia, gut permeability, or fecal fatty acid excretion, but significantly reduced hyperinsulinemia. Valine and isoleucine reduced ALT, CK18-M30, and liver steatosis with a particularly pronounced suppression of the microvesicular component (-61% by valine and -71% by isoleucine). Both BCAAs decreased intrahepatic diacylglycerols and 4-hydroxynonenal immunoreactivity, a marker for oxidative stress-induced lipid peroxidation. Functional genomics analysis demonstrated that valine and isoleucine affected BCAA metabolism genes, deactivated master regulators of anabolic pathways related to steatosis (e.g., SREBPF1), and activated master regulators of mitochondrial biogenesis (e.g., PPARGC1A) and lipid catabolism (e.g., ACOX1, AMPK). This correction of critical metabolic pathways on gene expression level was accompanied by a significant decrease in histological liver inflammation, and suppression of FFD-stimulated cytokine and chemokine proteins KC/CXCL1, MCP-1/CCL2, and MIP-2/CXCL2 and their pathways. In conclusion, dietary intervention with either valine or isoleucine corrected liver diacylglycerols, gene expression of multiple metabolic processes, and reduced NASH histology with profound hepatoprotective effects on oxidative stress and inflammatory proteins.


Assuntos
Hiperinsulinismo , Hepatopatia Gordurosa não Alcoólica , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Diglicerídeos/metabolismo , Hiperinsulinismo/metabolismo , Inflamação/metabolismo , Isoleucina/farmacologia , Isoleucina/uso terapêutico , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Valina/farmacologia
7.
Crit Rev Food Sci Nutr ; : 1-29, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37077157

RESUMO

Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.

8.
Brain ; 145(1): 45-63, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34849584

RESUMO

Mitochondria are small cellular constituents that generate cellular energy (ATP) by oxidative phosphorylation (OXPHOS). Dysfunction of these organelles is linked to a heterogeneous group of multisystemic disorders, including diabetes, cancer, ageing-related pathologies and rare mitochondrial diseases. With respect to the latter, mutations in subunit-encoding genes and assembly factors of the first OXPHOS complex (complex I) induce isolated complex I deficiency and Leigh syndrome. This syndrome is an early-onset, often fatal, encephalopathy with a variable clinical presentation and poor prognosis due to the lack of effective intervention strategies. Mutations in the nuclear DNA-encoded NDUFS4 gene, encoding the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) of complex I, induce 'mitochondrial complex I deficiency, nuclear type 1' (MC1DN1) and Leigh syndrome in paediatric patients. A variety of (tissue-specific) Ndufs4 knockout mouse models were developed to study the Leigh syndrome pathomechanism and intervention testing. Here, we review and discuss the role of complex I and NDUFS4 mutations in human mitochondrial disease, and review how the analysis of Ndufs4 knockout mouse models has generated new insights into the MC1ND1/Leigh syndrome pathomechanism and its therapeutic targeting.


Assuntos
Complexo I de Transporte de Elétrons , Doença de Leigh , Doenças Mitocondriais , Animais , Complexo I de Transporte de Elétrons/genética , Humanos , Doença de Leigh/genética , Camundongos , Camundongos Knockout , Doenças Mitocondriais/genética , Fosforilação Oxidativa
9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835625

RESUMO

Biomarkers are important in the assessment of health and disease, but are poorly studied in still healthy individuals with a (potential) different risk for metabolic disease. This study investigated, first, how single biomarkers and metabolic parameters, functional biomarker and metabolic parameter categories, and total biomarker and metabolic parameter profiles behave in young healthy female adults of different aerobic fitness and, second, how these biomarkers and metabolic parameters are affected by recent exercise in these healthy individuals. A total of 102 biomarkers and metabolic parameters were analysed in serum or plasma samples from 30 young, healthy, female adults divided into a high-fit (V̇O2peak ≥ 47 mL/kg/min, N = 15) and a low-fit (V̇O2peak ≤ 37 mL/kg/min, N = 15) group, at baseline and overnight after a single bout of exercise (60 min, 70% V̇O2peak). Our results show that total biomarker and metabolic parameter profiles were similar between high-fit and low-fit females. Recent exercise significantly affected several single biomarkers and metabolic parameters, mostly related to inflammation and lipid metabolism. Furthermore, functional biomarker and metabolic parameter categories corresponded to biomarker and metabolic parameter clusters generated via hierarchical clustering models. In conclusion, this study provides insight into the single and joined behavior of circulating biomarkers and metabolic parameters in healthy females, and identified functional biomarker and metabolic parameter categories that may be used for the characterisation of human health physiology.


Assuntos
Consumo de Oxigênio , Aptidão Física , Adulto , Humanos , Feminino , Aptidão Física/fisiologia , Consumo de Oxigênio/fisiologia , Exercício Físico/fisiologia , Nível de Saúde , Biomarcadores
10.
Am J Physiol Endocrinol Metab ; 322(2): E141-E153, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001658

RESUMO

Analyzing metabolism of peripheral blood mononuclear cells (PBMCs) can possibly serve as a cellular metabolic read-out for lifestyle factors and lifestyle interventions. However, the impact of PBMC composition on PBMC metabolism is not yet clear, neither is the differential impact of a longer-term lifestyle factor versus a short-term lifestyle intervention. We investigated the effect of aerobic fitness level and a recent exercise bout on PBMC metabolism in females. PBMCs from 31 young female adults divided into a high-fit (V̇o2peak ≥ 47 mL/kg/min, n = 15) and low-fit (V̇o2peak ≤ 37 mL/kg/min, n = 16) groups were isolated at baseline and overnight after a single bout of exercise (60 min, 70% V̇o2peak). Oxygen consumption rate (OCR) and glycolytic rate (GR) were measured using extracellular flux (XF) assays and PBMC subsets were characterized using fluorescence-activated cell sorting (FACS). Basal OCR, FCCP-induced OCR, spare respiratory capacity, ATP-linked OCR, and proton leak were significantly higher in high-fit than in low-fit females (all P < 0.01), whereas no significant differences in glycolytic rate (GR) were found (all P > 0.05). A recent exercise bout did not significantly affect GR or OCR parameters (all P > 0.05). The overall PBMC composition was similar between high-fit and low-fit females. Mitochondrial PBMC function was significantly higher in PBMCs from high-fit than from low-fit females, which was unrelated to PBMC composition and not impacted by a recent bout of exercise. Our study reveals a link between PBMC metabolism and levels of aerobic fitness, increasing the relevance of PBMC metabolism as a marker to study the impact of lifestyle factors on human health.NEW & NOTEWORTHY Mitochondrial metabolism was significantly higher in PBMCs from high-fit than from low-fit females. This was unrelated to PBMC composition and not impacted by a recent bout of exercise. Our study reveals a link between PBMC metabolism and levels of aerobic fitness, increasing the relevance of PBMC metabolism as a marker to study the impact of lifestyle factors on human health.


Assuntos
Exercício Físico/fisiologia , Espaço Extracelular/metabolismo , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Resistência Física/fisiologia , Prótons , Adolescente , Adulto , Feminino , Citometria de Fluxo/métodos , Glicólise/fisiologia , Humanos , Leucócitos Mononucleares/classificação , Estilo de Vida , Adulto Jovem
11.
Pharmacol Res ; 179: 106193, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358682

RESUMO

Early-life diets may have a long-lasting impact on metabolic health. This study tested the hypothesis that an early-life diet with large, phospholipid-coated lipid droplets (Concept) induces sustained improvements of hepatic mitochondrial function and metabolism. Young C57BL/6j mice were fed Concept or control (CTRL) diet from postnatal day 15 (PN15) to PN42, followed by western style (WSD) or standard rodent diet (AIN) until PN98. Measurements comprised body composition, insulin resistance (HOMA-IR), tricarboxylic acid (TCA) cycle- and ß-oxidation-related hepatic oxidative capacity using high-resolution respirometry, mitochondrial dynamics, mediators of insulin resistance (diacylglycerols, DAG) or ceramides) in subcellular compartments as well as systemic oxidative stress. Concept feeding increased TCA cycle-related respiration by 33% and mitochondrial fusion protein-1 by 65% at PN42 (both p 0.05). At PN98, CTRL, but not Concept, mice developed hyperinsulinemia (CTRL/AIN 0.22 ± 0.44 vs. CTRL/WSD 1.49 ± 0.53 nmol/l, p 0.05 and Concept/AIN 0.20 ± 0.38 vs. Concept/WSD 1.00 ± 0.29 nmol/l, n.s.) and insulin resistance after WSD (CTRL/AIN 107 ± 23 vs. CTRL/WSD 738 ± 284, p 0.05 and Concept/AIN 109 ± 24 vs. Concept/WSD 524 ± 157, n.s.). WSD-induced liver weight was 18% lower in adult Concept-fed mice and ß-oxidation-related respiration was 69% higher (p 0.05; Concept/WSD vs. Concept/AIN) along with lower plasma lipid peroxides (CTRL/AIN 4.85 ± 0.28 vs. CTRL/WSD 5.73 ± 0.47 µmol/l, p 0.05 and Concept/AIN 4.49 ± 0.31 vs. Concept/WSD 4.42 ± 0.33 µmol/l, n.s.) and were in part protected from WSD-induced increase in hepatic cytosolic DAG C16:0/C18:1. Early-life feeding of Concept partly protected from WSD-induced insulin resistance and systemic oxidative stress, potentially via changes in specific DAG and mitochondrial function, highlighting the role of early life diets on metabolic health later in life.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Animais , Dieta , Gorduras na Dieta , Modelos Animais de Doenças , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
12.
Eur J Nutr ; 61(1): 329-340, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34338868

RESUMO

PURPOSE: Vitamin B3 provides nicotinamide adenine dinucleotide (NAD+), an essential coenzyme in oxidoreductase reactions. Severe vitamin B3 deficiency leads to the disease Pellagra, while mild vitamin B3 deficiency has been linked to age-related and metabolic diseases. Mild vitamin B3 deficiency is understudied, especially in females. Therefore, we examined how female mice responded to a diet that induced mild vitamin B3 deficiency in male mice. METHODS: Female C57BL/6RccHsd mice were subjected for 18 weeks to a diet without vitamin B3 and low but sufficient tryptophan (0.115%) (0NR) and were compared to control female mice on the same diet with the reference dose of vitamin B3 (30NR, 30 mg nicotinamide riboside/ kg diet). RESULTS: In the female mice, no differences between the two dietary groups were found in liver nicotinamide mononucleotide (NMN) levels, body composition, whole body energy and substrate metabolism measured by indirect calorimetry, or liver triacylglycerol metabolism. Expression of seven genes that previously were shown to respond to mild vitamin B3 deficiency in male white adipose tissue were not differentially expressed between the female dietary groups, neither was insulin sensitivity. CONCLUSION: We concluded that the female 0NR mice were not vitamin B3 deficient; the role of age, sex and health status is discussed. Demonstrated by clear differences between females and males, the latter showing mild deficiency under the same conditions, this study highlights the importance of studying both sexes.


Assuntos
Tecido Adiposo Branco , Niacinamida/deficiência , Deficiência de Vitaminas do Complexo B , Animais , Feminino , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD , Fatores Sexuais , Vitaminas
13.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142131

RESUMO

Short-term post-weaning nutrition can result in long-lasting effects in later life. Partial replacement of glucose by galactose in the post-weaning diet showed direct effects on liver inflammation. Here, we examined this program on body weight, body composition, and insulin sensitivity at the adult age. Three-week-old female C57BL/6JRccHsd mice were fed a diet with glucose plus galactose (GAL; 16 energy% (en%) each) or a control diet with glucose (GLU; 32 en%) for three weeks, and afterward, both groups were given the same high-fat diet (HFD). After five weeks on a HFD, an oral glucose tolerance test was performed. After nine weeks on a HFD, energy metabolism was assessed by indirect calorimetry, and fasted mice were sacrificed fifteen minutes after a glucose bolus, followed by serum and tissue analyses. Body weight and body composition were not different between the post-weaning dietary groups, during the post-weaning period, or the HFD period. Glucose tolerance and energy metabolism in adulthood were not affected by the post-weaning diet. Serum adiponectin concentrations were significantly higher (p = 0.02) in GAL mice while insulin, leptin, and insulin-like growth factor 1 concentrations were not affected. Expression of Adipoq mRNA was significantly higher in gonadal white adipose tissue (gWAT; p = 0.03), while its receptors in the liver and skeletal muscles remained unaffected. Irs2 expression was significantly lower in skeletal muscles (p = 0.01), but not in gWAT or Irs1 expression (in both tissues). Gene expressions of inflammatory markers in gWAT and the liver were also not affected. Conclusively, galactose in the post-weaning diet significantly improved circulating adiponectin concentrations and reduced skeletal muscle Irs2 expression in adulthood without alterations in fat mass, glucose tolerance, and inflammation.


Assuntos
Adiponectina , Resistência à Insulina , Adiponectina/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Feminino , Galactose/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Desmame
14.
BMC Bioinformatics ; 22(1): 574, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34839828

RESUMO

BACKGROUND: Several computational methods have been developed that integrate transcriptomics data with genome-scale metabolic reconstructions to increase accuracy of inferences of intracellular metabolic flux distributions. Even though existing methods use transcript abundances as a proxy for enzyme activity, each method uses a different hypothesis and assumptions. Most methods implicitly assume a proportionality between transcript levels and flux through the corresponding function, although these proportionality constant(s) are often not explicitly mentioned nor discussed in any of the published methods. E-Flux is one such method and, in this algorithm, flux bounds are related to expression data, so that reactions associated with highly expressed genes are allowed to carry higher flux values. RESULTS: Here, we extended E-Flux and systematically evaluated the impact of an assumed proportionality constant on model predictions. We used data from published experiments with Escherichia coli and Saccharomyces cerevisiae and we compared the predictions of the algorithm to measured extracellular and intracellular fluxes. CONCLUSION: We showed that detailed modelling using a proportionality constant can greatly impact the outcome of the analysis. This increases accuracy and allows for extraction of better physiological information.


Assuntos
Fenômenos Bioquímicos , Modelos Biológicos , Escherichia coli/genética , Redes e Vias Metabólicas/genética , Saccharomyces cerevisiae/genética , Transcriptoma
15.
FASEB J ; 34(9): 11658-11671, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32672378

RESUMO

This study tested the hypothesis that in human aging, a decreased intramuscular acylcarnitine status is associated with (pre-)frailty, reduced physical performance, and altered mitochondrial function. We used a cross-sectional study design with well-matched fit and (pre-)frail old males and females, using young males and females as healthy controls. Frailty was assessed according to the Fried criteria and physical performance was determined by 400 m walk test, short physical performance battery and handgrip strength. Muscle and plasma acylcarnitine status, and muscle mitochondrial gene expression was analyzed. Results showed that intramuscular total carnitine levels and short-chain acylcarnitine levels were lower in (pre-)frail old females compared to fit old females and young females, whereas no differences were observed in males. The low intramuscular short-chain acylcarnitine levels in females correlated with low physical performance, even after correction for muscle mass (%), and were accompanied with lowered expression of genes involved in mitochondrial energy production and functionality. It is, therefore, concluded that in (pre-)frail old females, intramuscular total carnitine levels and short-chain acylcarnitine levels are decreased, and this decrease is associated with reduced physical performance and low expression of a wide range of genes critical for mitochondrial function. The results stress the importance of taking sex differences into account in aging research.


Assuntos
Envelhecimento/fisiologia , Carnitina/análogos & derivados , Fragilidade/fisiopatologia , Força da Mão/fisiologia , Músculos/metabolismo , Aptidão Física/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Carnitina/sangue , Carnitina/química , Carnitina/metabolismo , Estudos Transversais , Feminino , Idoso Fragilizado , Fragilidade/metabolismo , Humanos , Masculino , Fatores Sexuais , Caminhada/fisiologia
16.
FASEB J ; 34(7): 9003-9017, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32474969

RESUMO

Calorie restriction during gestation in rats has long-lasting adverse effects in the offspring. It induces metabolic syndrome-related alterations, which are partially reversed by leptin supplementation during lactation. We employed these conditions to identify transcript-based nutrient sensitive biomarkers in peripheral blood mononuclear cells (PBMCs) predictive of later adverse metabolic health. The best candidate was validated in humans. Transcriptome analysis of PBMCs from adult male Wistar rats of three experimental groups was performed: offspring of control dams (CON), and offspring of 20% calorie-restricted dams during gestation without (CR) and with leptin supplementation throughout lactation (CR-LEP). The expression of 401 genes was affected by gestational calorie restriction and reversed by leptin. The changes preceded metabolic syndrome-related phenotypic alterations. Of these genes, Npc1 mRNA levels were lower in CR vs CON, and normalized to CON in CR-LEP. In humans, NPC1 mRNA levels in peripheral blood cells (PBCs) were decreased in subjects with mildly impaired metabolic health compared to healthy subjects. Therefore, a set of potential transcript-based biomarkers indicative of a predisposition to metabolic syndrome-related alterations were identified, including NPC1, which was validated in humans. Low NPC1 transcript levels in PBCs are a candidate biomarker of increased risk for impaired metabolic health in humans.


Assuntos
Biomarcadores/sangue , Regulação da Expressão Gênica no Desenvolvimento , Leucócitos Mononucleares/metabolismo , Doenças Metabólicas/diagnóstico , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Transcriptoma , Animais , Restrição Calórica , Modelos Animais de Doenças , Feminino , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Gravidez , Ratos , Ratos Wistar
17.
J Inherit Metab Dis ; 44(2): 438-449, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32740932

RESUMO

Post-translational protein modifications derived from metabolic intermediates, such as acyl-CoAs, have been shown to regulate mitochondrial function. Patients with a genetic defect in the propionyl-CoA carboxylase (PCC) gene clinically present symptoms related to mitochondrial disorders and are characterised by decreased mitochondrial respiration. Since propionyl-CoA accumulates in PCC deficient patients and protein propionylation can be driven by the level of propionyl-CoA, we hypothesised that protein propionylation could play a role in the pathology of the disease. Indeed, we identified increased protein propionylation due to pathologic propionyl-CoA accumulation in patient-derived fibroblasts and this was accompanied by defective mitochondrial respiration, as was shown by a decrease in complex I-driven respiration. To mimic pathological protein propionylation levels, we exposed cultured fibroblasts, Fao liver cells and C2C12 muscle myotubes to propionate levels that are typically found in these patients. This induced a global increase in protein propionylation and histone protein propionylation and was also accompanied by a decrease in mitochondrial respiration in liver and fibroblasts. However, in C2C12 myotubes propionate exposure did not decrease mitochondrial respiration, possibly due to differences in propionyl-CoA metabolism as compared to the liver. Therefore, protein propionylation could contribute to the pathology in these patients, especially in the liver, and could therefore be an interesting target to pursue in the treatment of this metabolic disease.


Assuntos
Fibroblastos/metabolismo , Metilmalonil-CoA Descarboxilase/genética , Mitocôndrias/genética , Fibras Musculares Esqueléticas/metabolismo , Acidemia Propiônica/genética , Humanos , Fígado/metabolismo , Proteínas de Membrana , Mitocôndrias/enzimologia , Propionatos/metabolismo , Acidemia Propiônica/enzimologia , Processamento de Proteína Pós-Traducional/genética
18.
Nutr Res Rev ; 34(2): 276-302, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34057057

RESUMO

Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Antioxidantes , Carotenoides , Suplementos Nutricionais , Humanos , Estado Nutricional
19.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917194

RESUMO

Atrial fibrillation (AF) and ischemic heart disease (IHD) represent the two most common clinical cardiac diseases, characterized by angina, arrhythmia, myocardial damage, and cardiac dysfunction, significantly contributing to cardiovascular morbidity and mortality and posing a heavy socio-economic burden on society worldwide. Current treatments of these two diseases are mainly symptomatic and lack efficacy. There is thus an urgent need to develop novel therapies based on the underlying pathophysiological mechanisms. Emerging evidence indicates that oxidative DNA damage might be a major underlying mechanism that promotes a variety of cardiac diseases, including AF and IHD. Antioxidants, nicotinamide adenine dinucleotide (NAD+) boosters, and enzymes involved in oxidative DNA repair processes have been shown to attenuate oxidative damage to DNA, making them potential therapeutic targets for AF and IHD. In this review, we first summarize the main molecular mechanisms responsible for oxidative DNA damage and repair both in nuclei and mitochondria, then describe the effects of oxidative DNA damage on the development of AF and IHD, and finally discuss potential targets for oxidative DNA repair-based therapeutic approaches for these two cardiac diseases.


Assuntos
Fibrilação Atrial/etiologia , Reparo do DNA , Suscetibilidade a Doenças , Isquemia Miocárdica/etiologia , Estresse Oxidativo , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/terapia , Biomarcadores , Núcleo Celular/genética , Núcleo Celular/metabolismo , Gerenciamento Clínico , Expressão Gênica , Humanos , Modelos Biológicos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/terapia , Miocárdio/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
20.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681598

RESUMO

Butyrate is considered the primary energy source of colonocytes and has received wide attention due to its unique health benefits. Insight into the mechanistic effects of butyrate on cellular and metabolic function relies mainly on research in in-vitro-cultured cells. However, cells in culture differ from those in vivo in terms of metabolic phenotype and nutrient availability. For translation, it is therefore important to understand the impact of different nutrients on the effects of butyrate. We investigated the metabolic consequences of butyrate exposure under various culturing conditions, with a focus on the interaction between butyrate and glucose. To investigate whether the effects of butyrate were different between cells with high and low mitochondrial capacity, we cultured HT29 cells under either low- (0.5 mM) or high- (25 mM) glucose conditions. Low-glucose culturing increased the mitochondrial capacity of HT29 cells compared to high-glucose (25 mM) cultured HT29 cells. Long-term exposure to butyrate did not alter mitochondrial bioenergetics, but it decreased glycolytic function, regardless of glucose availability. In addition, both high- and low-glucose-grown HT29 cells showed increased lipid droplet accumulation following long-term butyrate exposure. Acute exposure of cultured cells (HT29 and Caco-2) to butyrate increased their oxygen consumption rate (OCR). A simultaneous decrease in extracellular acidification rate (ECAR) was observed. Furthermore, in the absence of glucose, OCR did not increase in response to butyrate. These results lead us to believe that butyrate itself was not responsible for the observed increase in OCR, but, instead, butyrate stimulated pyruvate flux into mitochondria. Indeed, blocking of the mitochondrial pyruvate carrier prevented a butyrate-induced increase in oxygen consumption. Taken together, our results indicate that butyrate itself is not oxidized in cultured cells but instead alters pyruvate flux and induces lipid accumulation.


Assuntos
Butiratos/farmacologia , Gotículas Lipídicas/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Linhagem Celular Tumoral , Colo/citologia , Colo/efeitos dos fármacos , Colo/metabolismo , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA