Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 337: 117669, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36966636

RESUMO

Seagrasses have been widely recognized for their ecosystem services, but traditional seagrass monitoring approaches emphasizing ground and aerial observations are costly, time-consuming, and lack standardization across datasets. This study leveraged satellite imagery from Maxar's WorldView-2 and WorldView-3 high spatial resolution, commercial satellite platforms to provide a consistent classification approach for monitoring seagrass at eleven study areas across the continental United States, representing geographically, ecologically, and climatically diverse regions. A single satellite image was selected at each of the eleven study areas to correspond temporally to reference data representing seagrass coverage and was classified into four general classes: land, seagrass, no seagrass, and no data. Satellite-derived seagrass coverage was then compared to reference data using either balanced agreement, the Mann-Whitney U test, or the Kruskal-Wallis test, depending on the format of the reference data used for comparison. Balanced agreement ranged from 58% to 86%, with better agreement between reference- and satellite-indicated seagrass absence (specificity ranged from 88% to 100%) than between reference- and satellite-indicated seagrass presence (sensitivity ranged from 17% to 73%). Results of the Mann-Whitney U and Kruskal-Wallis tests demonstrated that satellite-indicated seagrass percentage cover had moderate to large correlations with reference-indicated seagrass percentage cover, indicative of moderate to strong agreement between datasets. Satellite classification performed best in areas of dense, continuous seagrass compared to areas of sparse, discontinuous seagrass and provided a suitable spatial representation of seagrass distribution within each study area. This study demonstrates that the same methods can be applied across scenes spanning varying seagrass bioregions, atmospheric conditions, and optical water types, which is a significant step toward developing a consistent, operational approach for mapping seagrass coverage at the national and global scales. Accompanying this manuscript are instructional videos describing the processing workflow, including data acquisition, data processing, and satellite image classification. These instructional videos may serve as a management tool to complement field- and aerial-based mapping efforts for monitoring seagrass ecosystems.


Assuntos
Ecossistema , Imagens de Satélites , Estados Unidos , Monitoramento Ambiental/métodos
2.
Environ Monit Assess ; 195(11): 1353, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864113

RESUMO

Water clarity has long been used as a visual indicator of the condition of water quality. The clarity of waters is generally valued for esthetic and recreational purposes. Water clarity is often assessed using a Secchi disk attached to a measured line and lowered to a depth where it can be no longer seen. We have applied an approach which uses atmospherically corrected Landsat 8 data to estimate the water clarity in freshwater bodies by using the quasi-analytical algorithm (QAA) and Contrast Theory to predict Secchi depths for more than 270 lakes and reservoirs across the continental US. We found that incorporating Landsat 8 spectral data into methodologies created to retrieve the inherent optical properties (IOP) of coastal waters was effective at predicting in situ measures of the clarity of inland water bodies. The predicted Secchi depths were used to evaluate the recreational suitability for swimming and recreation using an assessment framework developed from public perception of water clarity. Results showed approximately 54% of the water bodies in our dataset were classified as "marginally suitable to suitable" with approximately 31% classed as "eminently suitable" and approximately 15% classed as "totally unsuitable-unsuitable". The implications are that satellites engineered for terrestrial applications can be successfully used with traditional ocean color algorithms and methods to measure the water quality of freshwater environments. Furthermore, operational land-based satellite sensors have the temporal repeat cycles, spectral resolution, wavebands, and signal-to-noise ratios to be repurposed to monitor water quality for public use and trophic status of complex inland waters.


Assuntos
Monitoramento Ambiental , Lagos , Monitoramento Ambiental/métodos , Qualidade da Água , Algoritmos , Recreação
3.
Environ Model Softw ; 109: 93-103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31595145

RESUMO

Cyanobacterial harmful algal blooms (cyanoHAB) cause human and ecological health problems in lakes worldwide. The timely distribution of satellite-derived cyanoHAB data is necessary for adaptive water quality management and for targeted deployment of water quality monitoring resources. Software platforms that permit timely, useful, and cost-effective delivery of information from satellites are required to help managers respond to cyanoHABs. The Cyanobacteria Assessment Network (CyAN) mobile device application (app) uses data from the European Space Agency Copernicus Sentinel-3 satellite Ocean and Land Colour Instrument (OLCI) in near realtime to make initial water quality assessments and quickly alert managers to potential problems and emerging threats related to cyanobacteria. App functionality and satellite data were validated with 25 state health advisories issued in 2017. The CyAN app provides water quality managers with a user-friendly platform that reduces the complexities associated with accessing satellite data to allow fast, efficient, initial assessments across lakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA