RESUMO
Protein-protein interactions (PPIs) represent the main mode of the proteome organization in the cell. In the last decade, several large-scale representations of PPI networks have captured generic aspects of the functional organization of network components but mostly lack the context of cellular states. However, the generation of context-dependent PPI networks is essential for structural and systems-level modeling of biological processes-a goal that remains an unsolved challenge. Here we describe an experimental/computational strategy to achieve a modeling of PPIs that considers contextual information. This strategy defines the composition, stoichiometry, temporal organization, and cellular requirements for the formation of target assemblies. We used this approach to generate an integrated model of the formation principles and architecture of a large signalosome, the TNF-receptor signaling complex (TNF-RSC). Overall, we show that the integration of systems- and structure-level information provides a generic, largely unexplored link between the modular proteome and cellular function.
Assuntos
Fenômenos Biológicos , Proteômica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/fisiologia , Proteoma/metabolismoRESUMO
One-anastomosis gastric bypass (OAGB) has gained importance as a simple, safe, and effective operation to treat morbid obesity. We previously found that Roux-en-Y gastric bypass surgery with a long compared with a short biliopancreatic limb (BPL) leads to improved weight loss and glucose tolerance in obese mice. However, it is not known whether a long BPL in OAGB surgery also results in beneficial metabolic outcomes. Five-week-old male C57BL/6J mice fed a high-fat diet (HFD) for 8 weeks underwent OAGB surgery with defined BPL lengths (5.5 cm distally of the duodenojejunal junction for short and 9.5 cm for long BPL), or sham surgery combined with caloric restriction. Weight loss, glucose tolerance, obesity-related comorbidities, endocrine effects, gut microbiota, and bile acids were assessed. Total weight loss was independent of the length of the BPL after OAGB surgery. However, a long BPL was associated with lower glucose-stimulated insulin on day 14, and an improved glucose tolerance on day 35 after surgery. Moreover, a long BPL resulted in reduced total cholesterol, while there were no differences in the resolution of metabolic dysfunction-associated steatotic liver disease (MASLD) and adipose tissue inflammation. Tendencies of an attenuated hypothalamic-pituitary-adrenal (HPA) axis and aldosterone were present in the long BPL group. With both the short and long BPL, we found an increase in primary conjugated bile acids (pronounced in long BPL) along with a loss in bacterial Desulfovibrionaceae and Erysipelotrichaceae and simultaneous increase in Akkermansiaceae, Sutterellaceae, and Enterobacteriaceae. In summary, OAGB surgery with a long compared with a short BPL led to similar weight loss, but improved glucose metabolism, lipid, and endocrine outcomes in obese mice, potentially mediated through changes in gut microbiota and related bile acids. Tailoring the BPL length in humans might help to optimize metabolic outcomes after bariatric surgery.NEW & NOTEWORTHY Weight loss following OAGB surgery in obese mice was not influenced by BPL length, but a longer BPL was associated with improved metabolic outcomes, including glucose and lipid homeostasis. These changes could be mediated by bile acids upon altered gut microbiota. Further validation of these findings is required through a randomized human study.
Assuntos
Derivação Gástrica , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade , Redução de Peso , Animais , Masculino , Camundongos , Redução de Peso/fisiologia , Obesidade/cirurgia , Obesidade/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal/fisiologia , Anastomose Cirúrgica , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , Ácidos e Sais Biliares/metabolismoRESUMO
AIMS/HYPOTHESIS: Colony stimulating factor 1 (CSF1) promotes the proliferation, differentiation and survival of macrophages, which have been implicated in both beneficial and detrimental effects on glucose metabolism. However, the physiological role of CSF1 signalling in glucose homeostasis and the potential therapeutic implications of modulating this pathway are not known. We aimed to study the composition of tissue macrophages (and other immune cells) following CSF1 receptor (CSF1R) inhibition and elucidate the metabolic consequences of CSF1R inhibition. METHODS: We assessed immune cell populations in various organs by flow cytometry, and tissue-specific metabolic effects by hyperinsulinaemic-euglycaemic clamps and insulin secretion assays in mice fed a chow diet containing PLX5622 (a CSF1R inhibitor) or a control diet. RESULTS: CSF1R inhibition depleted macrophages in multiple tissues while simultaneously increasing eosinophils and group 2 innate lymphoid cells. These immunological changes were consistent across different organs and were sex independent and reversible after cessation of the PLX5622. CSF1R inhibition improved hepatic insulin sensitivity but concomitantly impaired insulin secretion. In healthy islets, we found a high frequency of IL-1ß+ islet macrophages. Their depletion by CSF1R inhibition led to downregulation of macrophage-related pathways and mediators of cytokine activity, including Nlrp3, suggesting IL-1ß as a candidate insulin secretagogue. Partial restoration of physiological insulin secretion was achieved by injecting recombinant IL-1ß prior to glucose stimulation in mice lacking macrophages. CONCLUSIONS/INTERPRETATION: Macrophages and macrophage-derived factors, such as IL-1ß, play an important role in physiological insulin secretion. A better understanding of the tissue-specific effects of CSF1R inhibition on immune cells and glucose homeostasis is crucial for the development of targeted immune-modulatory treatments in metabolic disease. DATA AVAILABILITY: The RNA-Seq dataset is available in the Gene Expression Omnibus (GEO) under the accession number GSE189434 ( http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE189434 ).
Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Macrófagos/metabolismo , Glucose/metabolismoRESUMO
BACKGROUND: Air pollution has emerged as an unexpected risk factor for diabetes. However, the mechanism behind remains ill-defined. So far, the lung has been considered as the main target organ of air pollution. In contrast, the gut has received little scientific attention. Since air pollution particles can reach the gut after mucociliary clearance from the lungs and through contaminated food, our aim was to assess whether exposure deposition of air pollution particles in the lung or the gut drive metabolic dysfunction in mice. METHODS: To study the effects of gut versus lung exposure, we exposed mice on standard diet to diesel exhaust particles (DEP; NIST 1650b), particulate matter (PM; NIST 1649b) or phosphate-buffered saline by either intratracheal instillation (30 µg 2 days/week) or gavage (12 µg 5 days/week) over at least 3 months (total dose of 60 µg/week for both administration routes, equivalent to a daily inhalation exposure in humans of 160 µg/m3 PM2.5) and monitored metabolic parameters and tissue changes. Additionally, we tested the impact of the exposure route in a "prestressed" condition (high-fat diet (HFD) and streptozotocin (STZ)). RESULTS: Mice on standard diet exposed to particulate air pollutants by intratracheal instillation developed lung inflammation. While both lung and gut exposure resulted in increased liver lipids, glucose intolerance and impaired insulin secretion was only observed in mice exposed to particles by gavage. Gavage with DEP created an inflammatory milieu in the gut as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. In contrast, liver and adipose inflammation markers were not increased. Beta-cell secretory capacity was impaired on a functional level, most likely induced by the inflammatory milieu in the gut, and not due to beta-cell loss. The differential metabolic effects of lung and gut exposures were confirmed in a "prestressed" HFD/STZ model. CONCLUSIONS: We conclude that separate lung and gut exposures to air pollution particles lead to distinct metabolic outcomes in mice. Both exposure routes elevate liver lipids, while gut exposure to particulate air pollutants specifically impairs beta-cell secretory capacity, potentially instigated by an inflammatory milieu in the gut.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Camundongos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Pulmão , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , LipídeosRESUMO
A new family of highly unusual sesquarterpenoids (persicamidinesâ A-E) exhibiting significant antiviral activity was isolated from a newly discovered actinobacterial strain, Kibdelosporangium persicum sp. nov., collected from a hot desert in Iran. Extensive NMR analysis unraveled a hexacyclic terpenoid molecule with a modified sugar moiety on one side and a highly unusual isourea moiety fused to the terpenoid structure. The structures of the five analogues differed only in the aminoalkyl side chain attached to the isourea moiety. Persicamidinesâ A-E showed potent activity against hCoV-229E and SARS-CoV-2 viruses in the nanomolar range together with very good selectivity indices, making persicamidines promising as starting points for drug development.
Assuntos
COVID-19 , Coronavirus Humano 229E , Humanos , Antivirais/química , SARS-CoV-2 , Extratos VegetaisRESUMO
A metabolome-guided screening approach in the novel myxobacterium Corallococcus sp. MCy9072 resulted in the isolation of the unprecedented natural product myxofacycline A, which features a rare isoxazole substructure. Identification and genomic investigation of additional producers alongside targeted gene inactivation experiments and heterologous expression of the corresponding biosynthetic gene cluster in the host Myxococcus xanthus DK1622 confirmed a noncanonical megaenzyme complex as the biosynthetic origin of myxofacycline A. Induced expression of the respective genes led to significantly increased production titers enabling the identification of six further members of the myxofacycline natural product family. Whereas myxofacyclines A-D display an isoxazole substructure, intriguingly myxofacyclines E and F were found to contain 4-pyrimidinole, a heterocycle unprecedented in natural products. Lastly, myxofacycline G features another rare 1,2-dihydropyrol-3-one moiety. In addition to a full structure elucidation, we report the underlying biosynthetic machinery and present a rationale for the formation of all myxofacyclines. Unexpectedly, an extraordinary polyketide synthase-nonribosomal peptide synthetase hybrid was found to produce all three types of heterocycle in these natural products.
Assuntos
Myxococcales , Myxococcus xanthus , Policetídeos , Família Multigênica , Myxococcales/genética , Myxococcus xanthus/genética , Policetídeo Sintases/genéticaRESUMO
Human cytomegalovirus (HCMV) is a common ß-herpesvirus causing life-long latent infections. HCMV replication interferes with cell cycle regulation in host cells because the HCMV-encoded cyclin-dependent kinase (CDK) ortholog pUL97 extensively phosphorylates the checkpoint regulator retinoblastoma protein. pUL97 also interacts with cyclins B1, T1, and H, and recent findings have strongly suggested that these interactions influence pUL97 substrate recognition. Interestingly, here we detected profound mechanistic differences among these pUL97-cyclin interactions. Our study revealed the following. (i) pUL97 interacts with cyclins B1 and H in a manner dependent on pUL97 activity and HCMV-specific cyclin modulation, respectively. (ii) The phosphorylated state of both proteins is an important determinant of the pUL97-cyclin B1 interaction. (iii) Activated phospho-Thr-315 cyclin H is up-regulated during HCMV replication. (iv) Thr-315 phosphorylation is independent of intracellular pUL97 or CDK7 activity. (v) pUL97-mediated in vitro phosphorylation is detectable for cyclin B1 but not H. (vi) Mutual transphosphorylation between pUL97 and CDK7 is not detectable, and an MS-based phosphosite analysis indicated that pUL97 might unexpectedly not be phosphorylated in its T-loop. (vii) The binary complexes pUL97-cyclin H and CDK7-cyclin H as well as the ternary complex pUL97-cyclin-H-CDK7 are detectable in an assembly-based CoIP approach. (viii) pUL97 self-interaction can be bridged by the transcriptional cyclins T1 or H but not by the classical cell cycle-regulating B1 cyclin. Combined, our findings unravel a number of cyclin type-specific differences in pUL97 interactions and suggest a multifaceted regulatory impact of cyclins on HCMV replication.
Assuntos
Ciclina B1/metabolismo , Ciclina H/metabolismo , Ciclina T/metabolismo , Citomegalovirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Ciclina B1/genética , Ciclina H/genética , Ciclina T/genética , Células HEK293 , Humanos , Fosforilação , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteínas Virais/genéticaRESUMO
The tropical marine cyanobacterium Moorena bouillonii occupies a large geographic range across the Indian and Western Tropical Pacific Oceans and is a prolific producer of structurally unique and biologically active natural products. An ensemble of computational approaches, including the creation of the ORCA (Objective Relational Comparative Analysis) pipeline for flexible MS1 feature detection and multivariate analyses, were used to analyze various M. bouillonii samples. The observed chemogeographic patterns suggested the production of regionally specific natural products by M. bouillonii. Analyzing the drivers of these chemogeographic patterns allowed for the identification, targeted isolation, and structure elucidation of a regionally specific natural product, doscadenamide A (1). Analyses of MS2 fragmentation patterns further revealed this natural product to be part of an extensive family of herein annotated, proposed natural structural analogs (doscadenamides B-J, 2-10); the ensemble of structures reflect a combinatorial biosynthesis using nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) components. Compound 1 displayed synergistic in vitro cancer cell cytotoxicity when administered with lipopolysaccharide (LPS). These discoveries illustrate the utility in leveraging chemogeographic patterns for prioritizing natural product discovery efforts.
Assuntos
Amidas/química , Amidas/farmacologia , Organismos Aquáticos/química , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Técnicas de Química Analítica/métodos , Química Computacional/métodos , Cianobactérias/química , Citotoxinas/química , Citotoxinas/isolamento & purificação , Descoberta de Drogas/métodos , Pirróis , Amidas/isolamento & purificação , Animais , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida , Citotoxinas/farmacologia , Sinergismo Farmacológico , Humanos , Lipopolissacarídeos/farmacologia , Espectrometria de Massas , Redes e Vias Metabólicas , Camundongos , Pirróis/química , Pirróis/farmacologiaRESUMO
Marine Cyanobacteria (blue-green algae) have been shown to possess an enormous potential to produce structurally diverse natural products that exhibit a broad spectrum of potent biological activities, including cytotoxic, antifungal, antiparasitic, antiviral, and antibacterial activities. Here, we report the isolation and structure determination of palstimolide A, a complex polyhydroxy macrolide with a 40-membered ring that was isolated from a tropical marine cyanobacterium collected at Palmyra Atoll. NMR-guided fractionation in combination with MS2-based molecular networking and isolation via HPLC yielded 0.7 mg of the pure compound. The small quantity isolated along with the presence of significant signal degeneracy in both the 1H and 13C-NMR spectra complicated the structure elucidation of palstimolide A. Various NMR experiments and solvent systems were employed, including the LRHSQMBC experiment that allows the detection of long-range 1H-13C correlation data across 4-, 5-, and even 6-bonds. This expanded NMR data set enabled the elucidation of the palstimolide's planar structure, which is characterized by several 1,5-disposed hydroxy groups as well as a tert-butyl group. The compound showed potent antimalarial activity with an IC50 of 223 nM as well as interesting anti-leishmanial activity with an IC50 of 4.67 µM.
Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Organismos Aquáticos/química , Cianobactérias/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-AtividadeRESUMO
Vioprolides are a promising class of anticancer and antifungal lead compounds produced by the myxobacterium Cystobacter violaceus Cbâ vi35. Previously nothing had been reported about their biosynthesis, including the origin of the unusual 4-methylazetidinecarboxylic acid (MAZ) moiety. We describe the vioprolide biosynthetic gene cluster and solve the production obstacle by expression in three heterologous hosts. Starting from unstable production in the wild type at the single-digit mg L-1 scale, we developed a stable host that eventually allowed for yields of up to half a gram per liter in fermenters. Gene inactivations coupled with isotope feeding studies identified an S-adenosylmethionine (SAM)-dependent enzyme and a methyltransferase as being responsible for the generation of the MAZ building block by a proposed mechanism unprecedented in bacteria. Furthermore, nonnatural vioprolide derivatives were generated via rational genetic engineering.
RESUMO
The relationship between sleep and adolescent depression is much discussed, but still not fully understood. One important sleep variable is self-selected sleep timing, which is also referred to as chronotype. Chronotype is mostly regulated by the circadian clock that synchronises the internal time of the body with the external light dark cycle. A late chronotype as well as a misalignment between internal time and external time such as social jetlag has been shown to be associated with depressive symptoms in adults. In this study, we investigated whether adolescents with remitted depression differ from healthy controls in terms of chronotype, social jetlag and other sleep-related variables. For this purpose, we assessed chronotype and social jetlag with the Munich ChronoType Questionnaire (MCTQ), subjective sleep quality with the Pittsburgh Sleep Quality Index (PSQI) and used continuous wrist-actimetry over 31 consecutive days to determine objective sleep timing. Given the potentially mediating effect of light on chronotype and depressive symptoms, we measured light exposure with a light sensor on the actimeter. In our sample, adolescents with remitted depression showed similar chronotypes and similar amounts of social jetlag compared to controls. However, patients with remitted depression slept significantly longer on work-free days and reported a worse subjective sleep quality than controls. Additionally, light exposure in remitted patients was significantly higher, but this finding was mediated by living in a rural environment. These findings indicate that chronotype might be modified during remission, which should be further investigated in longitudinal studies.
Assuntos
Depressão/psicologia , Luz , Transtornos do Sono-Vigília/psicologia , Adolescente , Adulto , Criança , Ritmo Circadiano , Feminino , Voluntários Saudáveis , Humanos , Masculino , Inquéritos e Questionários , Adulto JovemRESUMO
Many patients with depressive disorders experience symptoms in relation to sleep behavior and daily rhythmicity. However, the multifaceted associations between sleep, depression and circadian rhythms are not fully understood. During the past years, the concept of chronotypehas become increasingly popular in research. The Munich Chronotype Questionnaire (MCTQ) derives chronotype from sleep timing on work-free days and therefore represents a biological measure for the circadian clock, whereas the Morningness-Eveningness-Questionnaire(MEQ) assesses chronotype as a subjective preference for different activities at specific times of day. Chronotype changes with age, with adolescents and young adults being especially late types. We conducted a systematic literature research and identified studies that explore the association between chronotype (MEQ, MCTQ) and depressive symptoms or depressive disorders. Most of the studies showed an association between a late chronotype and depressive symptomatology. However, it is still unclear what is cause and effect. We propose a bidirectional relationship: On the one hand, due to reduced social and physical activity, depressed patients get less daylight which causes their chronotype to delay. On the other hand, a discrepancy between internal time (directed by the circadian clock) and external time (such as early school- or works tarting times) can cause problems
Assuntos
Ritmo Circadiano , Transtorno Depressivo/diagnóstico , Transtorno Depressivo/psicologia , Transtornos do Sono do Ritmo Circadiano/diagnóstico , Transtornos do Sono do Ritmo Circadiano/psicologia , Adolescente , Fatores Etários , Relógios Circadianos , Feminino , Humanos , Relações Interpessoais , Masculino , Fotoperíodo , Fatores de Risco , Estatística como Assunto , Inquéritos e Questionários , Adulto JovemRESUMO
In our screening efforts to identify unique scaffolds from myxobacteria for the drug discovery process, we used LC-SPE-NMR-MS techniques to isolate six linear peptides, termed macyranone A-F, from Cystobacter fuscus MCy9118. The macyranones are characterized by a rare 2-methylmalonamide moiety and an α-amino ketone fragment including an α',ß'-epoxyketone in macyranone A. Gene disruption experiments confirmed the biosynthetic gene cluster of the macyranones as PKS/NRPS hybrid. Detailed in silico and phylogenetic analysis unraveled that the biosynthesis involves two conspicuous amide bond formations accomplished by an amidotransferase and a unique condensation domain. The gene cluster provides further insights into the formation of the powerful epoxyketone residue involving an acyl-CoA dehydrogenase and an unconventional free-standing thioesterase. Macyranone A was found to inhibit the chymotrypsin-like activity of the yeast 20S proteasome with an IC50 of 5.9 nM and the human constitutive proteasome and immunoproteasome with IC50 values of 21 and 15 nM, respectively. The ß5 subunit of the 20S proteasome was characterized as target by X-ray crystallography revealing an irreversible binding mode similar to the natural product epoxomicin. The presence of the methylmalonamide residue facilitates the stabilization of macyranone A with the active ß5 subunit of the proteasome. Macyranone A exhibits a potent inhibitory effect against the parasites Trypanosoma brucei rhodesiense and Leishmania donovani with IC50 values of 1.55 and 0.22 µM, respectively.
Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Myxococcales/química , Peptídeos/química , Peptídeos/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Anti-Infecciosos/metabolismo , Vias Biossintéticas , Cromatografia Líquida , Descoberta de Drogas , Humanos , Espectrometria de Massas , Modelos Moleculares , Família Multigênica , Myxococcales/genética , Myxococcales/metabolismo , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Peptídeos/metabolismo , Filogenia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/metabolismoRESUMO
Telomycin (TEM) is a cyclic depsipeptide antibiotic active against Gram-positive bacteria. In this study, five new natural telomycin analogues produced by Streptomyces canus ATCC 12646 were identified. To understand the biosynthetic machinery of telomycin and to generate more analogues by pathway engineering, the TEM biosynthesis gene cluster has been characterized from S. canus ATCC 12646: it spans approximately 80.5 kb and consists of 34 genes encoding fatty acid ligase, nonribosomal peptide synthetases (NRPSs), regulators, transporters, and tailoring enzymes. The gene cluster was heterologously expressed in Streptomyces albus J1074 setting the stage for convenient biosynthetic engineering, mutasynthesis, and production optimization. Moreover, in-frame deletions of one hydroxylase and two P450 monooxygenase genes resulted in the production of novel telomycin derivatives, revealing these genes to be responsible for the specific modification by hydroxylation of three amino acids found in the TEM backbone. Surprisingly, natural lipopeptide telomycin precursors were identified when characterizing an unusual precursor deacylation mechanism during telomycin maturation. By in vivo gene inactivation and in vitro biochemical characterization of the recombinant enzyme Tem25, the maturation process was shown to involve the cleavage of previously unknown telomycin precursor-lipopeptides, to yield 6-methylheptanoic acid and telomycins. These lipopeptides were isolated from an inactivation mutant of tem25 encoding a (de)acylase, structurally elucidated, and then shown to be deacylated by recombinant Tem25. The TEM precursor and several semisynthetic lipopeptide TEM derivatives showed rapid bactericidal killing and were active against several multidrug-resistant (MDR) Gram-positive pathogens, opening the path to future chemical optimization of telomycin for pharmaceutical application.
Assuntos
Antibacterianos/metabolismo , Lipopeptídeos/metabolismo , Família Multigênica , Peptídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Hidroxilação , Lipopeptídeos/química , Lipopeptídeos/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos/química , Peptídeos/genética , Streptomyces/químicaRESUMO
Transcriptional regulation plays a central role in adaptation to changing environments for all living organisms. Recently, proteins belonging to a novel widespread class of bacterial transcription factors have been characterized in mycobacteria and Proteobacteria. Those multidomain proteins carry a WYL domain that is almost exclusive to the domain of bacteria. WYL domain-containing proteins act as regulators in different cellular contexts, including the DNA damage response and bacterial immunity. WYL domains have an Sm-like fold with five antiparallel ß-strands arranged into a ß-sandwich preceded by an α-helix. A common feature of WYL domains is their ability to bind nucleic acids that regulate their activity. In this review, we discuss recent progress made toward the understanding of WYL domain-containing proteins as transcriptional regulators, their structural features, and molecular mechanisms, as well as their functional roles in bacterial physiology.
Assuntos
Proteínas de Bactérias , Ácidos Nucleicos , Proteínas de Bactérias/metabolismo , Bactérias/genética , Bactérias/metabolismo , Fatores de Transcrição/genéticaRESUMO
The WYL domain is a nucleotide-sensing module that controls the activity of transcription factors involved in the regulation of DNA damage response and phage defense mechanisms in bacteria. In this study, we investigated a WYL domain-containing transcription factor in Mycobacterium smegmatis that we termed stress-involved WYL domain-containing regulator (SiwR). We found that SiwR controls adjacent genes that belong to the DinB/YfiT-like putative metalloenzymes superfamily by upregulating their expression in response to various genotoxic stress conditions, including upon exposure to H2O2 or the natural antibiotic zeocin. We show that SiwR binds different forms of single-stranded DNA (ssDNA) with high affinity, primarily through its characteristic WYL domain. In combination with complementation studies of a M. smegmatis siwR deletion strain, our findings support a role of the WYL domains as signal-sensing activity switches of WYL domain-containing transcription factors (WYL TFs). Our study provides evidence that WYL TFs are involved in the adaptation of bacteria to changing environments and encountered stress conditions.
Assuntos
Peróxido de Hidrogênio , Mycobacterium , Peróxido de Hidrogênio/farmacologia , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Mycobacterium/genética , Mycobacterium/metabolismo , DNA de Cadeia Simples , Dano ao DNARESUMO
Pupylation, a post-translational modification found in Mycobacterium tuberculosis and other Actinobacteria, involves the covalent attachment of prokaryotic ubiquitin-like protein (Pup) to lysines on target proteins by the ligase PafA (proteasome accessory factor A). Pupylated proteins, like ubiquitinated proteins in eukaryotes, are recruited for proteasomal degradation. Proteomic studies suggest that hundreds of potential pupylation targets are modified by the sole existing ligase PafA. This raises intriguing questions regarding the selectivity of this enzyme towards a diverse range of substrates. Here, we show that the availability of surface lysines alone is not sufficient for interaction between PafA and target proteins. By identifying the interacting residues at the pupylation site, we demonstrate that PafA recognizes authentic substrates via a structural recognition motif centered around exposed lysines. Through a combination of computational analysis, examination of available structures and pupylated proteomes, and biochemical experiments, we elucidate the mechanism by which PafA achieves recognition of a wide array of substrates while retaining selective protein turnover.
Assuntos
Ligases , Ubiquitinas , Proteômica , Eletricidade Estática , Células Procarióticas , LisinaRESUMO
Diabetes mellitus is a disease of the hormone-secreting endocrine pancreas. However, increasing evidence suggests that the exocrine pancreas is also involved in the pathogenesis of diabetes. In this protocol, we describe how to harvest both isolated islets and exocrine tissue from one mouse pancreas, followed by a detailed explanation of how to isolate and analyze immune cells using full-spectrum flow cytometry.
Assuntos
Ilhotas Pancreáticas , Pâncreas Exócrino , Camundongos , Animais , Citometria de FluxoRESUMO
Descriptive analyses of socially important or theoretically interesting phenomena and trends are a vital component of research in the behavioral, social, economic, and health sciences. Such analyses yield reliable results when using representative individual participant data (IPD) from studies with complex survey designs, including educational large-scale assessments (ELSAs) or social, health, and economic survey and panel studies. The meta-analytic integration of these results offers unique and novel research opportunities to provide strong empirical evidence of the consistency and generalizability of important phenomena and trends. Using ELSAs as an example, this tutorial offers methodological guidance on how to use the two-stage approach to IPD meta-analysis to account for the statistical challenges of complex survey designs (e.g., sampling weights, clustered and missing IPD), first, to conduct descriptive analyses (Stage 1), and second, to integrate results with three-level meta-analytic and meta-regression models to take into account dependencies among effect sizes (Stage 2). The two-stage approach is illustrated with IPD on reading achievement from the Programme for International Student Assessment (PISA). We demonstrate how to analyze and integrate standardized mean differences (e.g., gender differences), correlations (e.g., with students' socioeconomic status [SES]), and interactions between individual characteristics at the participant level (e.g., the interaction between gender and SES) across several PISA cycles. All the datafiles and R scripts we used are available online. Because complex social, health, or economic survey and panel studies share many methodological features with ELSAs, the guidance offered in this tutorial is also helpful for synthesizing research evidence from these studies.